

 [image: unidist logo]

What is unidist?

unidist (Unified Distributed Execution) is a framework that is intended to provide the unified API for distributed
execution by supporting various performant execution backends. At the moment the following backends are supported under the hood:

	MPI [https://www.mpi-forum.org/]

	Dask Distributed [https://distributed.dask.org/en/latest/]

	Ray [https://docs.ray.io/en/master/index.html]

	Python Multiprocessing [https://docs.python.org/3/library/multiprocessing.html]

Also, the framework provides a Python Sequential backend (pyseq),
that can be used for debugging.

unidist is designed to work in a task-based parallel model [https://en.wikipedia.org/wiki/Task_parallelism]. The framework mimics Ray [https://docs.ray.io/en/master/index.html] API and expands the existing frameworks
(Ray [https://docs.ray.io/en/master/index.html] and Dask Distributed [https://distributed.dask.org/en/latest/]) with additional features.

Quick Start Guide

Installation

To install the most recent stable release for unidist run the following:

pip install unidist[all] # Install unidist with dependencies for all the backends

For further instructions on how to install unidist with concrete execution backends or
using conda see our Installation section.

Usage

The example below describes squaring the numbers from a list using unidist:

script.py
if __name__ == "__main__":
 import unidist

 unidist.init() # Initialize unidist's backend. MPI is used by default.

 @unidist.remote # Apply a decorator to make `foo` a remote function.
 def foo(x):
 return x * x

 # This will run `foo` on a pool of workers in parallel;
 # `refs` will contain object references to actual data.
 refs = [foo.remote(i) for i in range(4)]

 # Get materialized data.
 print(unidist.get(refs)) # [0, 1, 4, 9]

Run the script.py with:

$ mpiexec -n 1 python script.py # for MPI backend
python script.py # for any other supported backend

To get started with unidist refer to the getting started page.

To deep dive into unidist internals refer to the framework architecture.

Installation

There are several ways to install unidist. Most users will want to install with
pip or using conda tool, but some users may want to build from the master branch
on the GitHub repo [https://github.com/modin-project/unidist/tree/master]. The master branch has the most recent patches, but may be less
stable than a release installed from pip or conda.

Installing with pip

Stable version

unidist can be installed with pip on Linux, Windows and MacOS.
To install the most recent stable release run the following:

pip install unidist # Install unidist with dependencies for Python Multiprocessing and Python Sequential backends

unidist can also be used with MPI, Dask or Ray execution backend.
If you don’t have MPI [https://www.mpi-forum.org/], Dask [https://distributed.dask.org/en/latest/] or Ray [https://docs.ray.io/en/master/index.html] installed, you will need to install unidist with one of the targets:

pip install unidist[all] # Install unidist with dependencies for all the backends
pip install unidist[mpi] # Install unidist with dependencies for MPI backend
pip install unidist[dask] # Install unidist with dependencies for Dask backend
pip install unidist[ray] # Install unidist with dependencies for Ray backend

unidist automatically detects which execution backends are installed and uses that for
scheduling computation!

Note

There are different MPI implementations, each of which can be used as a backend in unidist.
Mapping unidist[mpi] installs mpi4py package, which is just a Python wrapper for MPI.
To enable unidist on MPI execution you need to have a working MPI implementation and certain software installed beforehand.
Refer to installation [https://mpi4py.readthedocs.io/en/latest/install.html] page of the mpi4py documentation for details.
Also, you can find some instructions on MPI backend page.

Release candidates

unidist follows Semantic Versioning [https://semver.org] and before some major or minor releases,
we will upload a release candidate to test and check if there are any problems.
If you would like to install a pre-release of unidist, run the following:

pip install --pre unidist

These pre-releases are uploaded for dependencies and users to test their existing code
to ensure that it still works. If you find something wrong, please raise an issue [https://github.com/modin-project/unidist/issues].

Installing with conda

Using conda-forge channel

unidist releases can be installed using conda from the conda-forge channel. Starting from the first 0.1.0 release
it is possible to install unidist with chosen execution backend(s) alongside. Current options are:

	Package name in conda-forge

	Backend(s)

	Supported OSs

	unidist

	Python Multiprocessing [https://docs.python.org/3/library/multiprocessing.html], Python Sequential

	Linux, Windows, MacOS

	unidist-all

	MPI [https://www.mpi-forum.org/], Dask [https://distributed.dask.org/en/latest/], Ray [https://docs.ray.io/en/master/index.html], Python Multiprocessing [https://docs.python.org/3/library/multiprocessing.html], Python Sequential

	Linux, Windows

	unidist-mpi

	MPI [https://www.mpi-forum.org/]

	Linux, Windows, MacOS

	unidist-dask

	Dask [https://distributed.dask.org/en/latest/]

	Linux, Windows, MacOS

	unidist-ray

	Ray [https://docs.ray.io/en/master/index.html]

	Linux, Windows

For installing unidist with dependencies for MPI and Dask execution backends into a conda environment
the following command should be used:

conda install unidist-mpi unidist-dask -c conda-forge

All set of backends could be available in a conda environment by specifying:

conda install unidist-all -c conda-forge

or explicitly:

conda install unidist-mpi unidist-dask unidist-ray -c conda-forge

Note

There are different MPI implementations, each of which can be used as a backend in unidist.
By default, mapping unidist-mpi installs a default MPI implementation, which comes with mpi4py package and is ready to use.
The conda dependency solver decides on which MPI implementation is to be installed. If you want to use a specific version of MPI,
you can install the core dependencies for MPI backend and the specific version of MPI as conda install unidist-mpi <mpi>
as shown in the installation [https://mpi4py.readthedocs.io/en/latest/install.html] page of mpi4py documentation. That said, it is highly encouraged to use your own MPI binaries
as stated in the Using External MPI Libraries [https://conda-forge.org/docs/user/tipsandtricks.html#using-external-message-passing-interface-mpi-libraries] section of the conda-forge documentation in order to get ultimate performance.

Using intel channel

Conda intel channel contains a performant MPI implementaion [https://anaconda.org/intel/mpi4py],
which can be used in the unidist MPI backend instead of an MPI implementation from conda-forge channel.
To install Intel MPI you should use the following:

conda install unidist -c conda-forge
conda install mpi4py -c intel

Installing from the GitHub master branch

If you’d like to try unidist using the most recent updates from the master branch, you can
also use pip.

Install unidist with dependencies for Python Multiprocessing and Python Sequential backends
pip install git+https://github.com/modin-project/unidist
Install unidist with dependencies for all the backends
pip install git+https://github.com/modin-project/unidist#egg=unidist[all]
Install unidist with dependencies for MPI backend
pip install git+https://github.com/modin-project/unidist#egg=unidist[mpi]

This will install directly from the repo without you having to manually clone it! Please be aware
that these changes have not made it into a release and may not be completely stable.

Building unidist from Source

If you’re planning to contribute to unidist, you need to ensure that you are
building unidist from the local repository that you are working of. Occasionally,
there are issues in overlapping unidist installs from PyPI and from source. To avoid these
issues, we recommend uninstalling unidist before installation from source:

pip uninstall unidist

To build from source, you first must clone the repo. We recommend forking the repository first
through the GitHub interface, then cloning as follows:

git clone https://github.com/<your-github-username>/unidist.git

Once cloned, cd into the unidist directory and use pip to install:

cd unidist
Install unidist with dependencies for Python Multiprocessing and Python Sequential backends
pip install -e .
Install unidist with dependencies for all the backends
pip install -e .[all]
Install unidist with dependencies for MPI backend
pip install -e .[mpi]

Getting Started

unidist provides the high-level API to make distributed applications. To tune
unidist’s behavior the user has several methods described in unidist configuration settings
section.

Using unidist API

The example below shows how to use unidist API to make parallel execution for
functions (tasks) and classes (actors).

script.py

if __name__ == "__main__":
 import unidist.config as cfg
 import unidist

 # Initialize unidist's backend. The MPI backend is used by default.
 unidist.init()

 # Apply decorator to make `square` a remote function.
 @unidist.remote
 def square(x):
 return x * x

 # Asynchronously execute remote function.
 square_refs = [square.remote(i) for i in range(4)]

 # Apply decorator to make `Counter` actor class.
 @unidist.remote
 class Cube:
 def __init__(self):
 self.volume = None

 def compute_volume(self, square):
 self.volume = square ** 1.5

 def read(self):
 return self.volume

 # Create instances of the actor class.
 cubes = [Cube.remote() for _ in range(len(square_refs))]
 # Asynchronously execute methods of the actor class.
 [cube.compute_volume.remote(square) for cube, square in zip(cubes, square_refs)]
 cube_refs = [cube.read.remote() for cube in cubes]

 # Get materialized results.
 print(unidist.get(square_refs)) # [0, 1, 4, 9]
 print(unidist.get(cube_refs)) # [0.0, 1.0, 8.0, 27.0]

Choosing unidist’s backend

The examples below use the UNIDIST_BACKEND environment variable to set the execution backend:

Running the script with unidist on MPI backend
$ export UNIDIST_BACKEND=mpi
$ mpiexec -n 1 python script.py
Running the script with unidist on Dask backend
$ export UNIDIST_BACKEND=dask
$ python script.py
Running the script with unidist on Ray backend
$ export UNIDIST_BACKEND=ray
$ python script.py

You probably noticed one specific thing when using the MPI backend to run the script, namely, the use of mpiexec command.
Currently, almost all MPI implementations require mpiexec command to be used when running an MPI program.

Using Unidist

This page contains information on how to choose a concrete execution backend and run unidist with it.

	Unidist on MPI

	Unidist on Dask

	Unidist on Ray

	Unidist on PyMp

	Unidist on PySeq

Libraries powered by Unidist

Here you can find information on which libraries have already been integrated with unidist
to use its performant backends to get better performance.

	
	Modin [https://github.com/modin-project/modin]
	
	Refer to Using pandas on Unidist [https://modin.readthedocs.io/en/latest/development/using_pandas_on_unidist.html] page of the Modin documentation on how to get started with Modin on unidist.

Optimization Notes

This page contains optimization notes for every backend that can be applied to it to get ultimate performance.

	MPI

	Dask

	Ray

	PyMp

	PySeq

MPI backend

We highly encourage to use external (either custom-built or system-provided) MPI installations
in production scenarious to get ultimate performance.

Open Source MPI implementaions

Building MPI from source

In Building MPI from source [https://mpi4py.readthedocs.io/en/latest/appendix.html#building-mpi-from-sources] section of mpi4py documentation you can find executive instructions
for building some of the open-source MPI implementations out there with support for shared/dynamic libraries on POSIX environments.

Once you have a working MPI implementation, you will have to adapt your PATH environment variable
to use the installed MPI version.

export PATH=path/to/mpi/bin:$PATH

Then, you can install unidist and the required dependencies for the MPI backend.

pip install unidist[mpi]

Now you can use unidist on MPI backend using the installed MPI implementaion.

Proprietary MPI implementations

Intel MPI From Intel oneAPI HPC Toolkit

The following instructions will help you install Intel MPI from Intel oneAPI HPC Toolkit [https://www.intel.com/content/www/us/en/developer/tools/oneapi/hpc-toolkit-download.html] to use it as the unidist’s backend.
We will use an offline installer an an example but you are free to use other installation options.

	Create a directory for installing Intel MPI and go into it. You can do this in a terminal by typing

mkdir local
cd local

	Download a toolkit installer from Intel oneAPI HPC Toolkit [https://www.intel.com/content/www/us/en/developer/tools/oneapi/hpc-toolkit-download.html], e.g., using wget command

wget https://registrationcenter-download.intel.com/akdlm/IRC_NAS/1ff1b38a-8218-4c53-9956-f0b264de35a4/l_HPCKit_p_2023.1.0.46346_offline.sh

Note that we use the specific version of the toolkit as an example. You can install any version you want.

	Launch the installer

sh ./l_HPCKit_p_2023.1.0.46346_offline.sh

During installation process you can choose a directory in which the toolkit should be installed
(e.g., path/to/local/<toolkit>).

	Source the setvars.sh (global to the toolkit) or the vars.sh (local to the Intel MPI)

source path/to/local/<toolkit>/oneapi/setvars.sh
source path/to/local/<toolkit>/oneapi/mpi/latest/env/vars.sh

	Install unidist and the required dependencies for the MPI backend

pip install unidist[mpi]

Now you can use unidist on MPI backend using Intel MPI implementaion.

	Remove the installer (optional):

rm l_HPCKit_p_2023.1.0.46346_offline.sh

Dask backend

Unidist is just a wrapper for Dask so to get ultimate performance for this backend
you should read through Build Understanding section of Dask [https://distributed.dask.org/en/latest/] documentation
to get more insights with respect to performance improvements.

Ray backend

Unidist is just a wrapper for Ray so to get ultimate performance for this backend
you should follow Ray’s Design Patterns & Anti-patterns [https://docs.ray.io/en/latest/ray-core/patterns/index.html].

PyMp backend

Coming soon…

PySeq backend

Python Sequential backend is for debugging so we do not provide optimization notes for this backend.

Unidist Architecture

High-Level Execution View

The diagram below outlines the high-level view to the execution flow of unidist.

[image: ../_images/execution_flow.svg]

When calling an operation of the API provided by the framework unidist appeals to
the BackendProxy object that dispatches the call to
the concrete backend class instance (MPIBackend,
DaskBackend,
RayBackend,
PyMpBackend or
PySeqBackend).
These classes are childs of the Backend interface and should override
operations declared in it. Then, the concrete backend performs passed operation and hands over the result back to
the BackendProxy that postprocesses it if necessary and returns it to the user.

Class View

unidist performs operations using the following key base classes:

	BackendProxy

	RemoteFunction

	ActorClass

	Actor

	ActorMethod

	ObjectRef

Module View

unidist modules layout is shown below. To deep dive into unidist internal implementation
details just pick module you are interested in.

└───unidist
 ├─── api
 ├─── config
 └───core
 ├───backends
 | ├───common
 | │ └─── data_id
 | ├───dask
 | │ ├─── actor
 | │ ├─── backend
 | │ └─── remote_function
 | ├───mpi
 | | ├───core
 | │ │ ├─── async_operations
 | │ │ ├─── common
 | │ │ ├─── communication
 | │ │ ├─── controller
 | │ │ ├─── monitor
 | │ │ ├─── local_object_store
 | │ │ ├─── shared_object_store
 | │ │ ├─── serialization
 | │ │ └─── worker
 | │ ├─── actor
 | │ ├─── backend
 | │ └─── remote_function
 | ├───pymp
 │ | ├───core
 │ │ │ ├─── actor
 │ │ │ ├─── api
 │ │ │ ├─── object_store
 │ │ │ └─── process_manager
 │ │ ├─── actor
 │ │ ├─── backend
 │ │ └─── remote_function
 │ ├───pyseq
 │ | ├───core
 │ │ │ ├─── api
 │ │ │ └─── object_store
 │ │ ├─── actor
 │ │ ├─── backend
 │ │ └─── remote_function
 │ └───ray
 │ ├─── actor
 │ ├─── backend
 │ └─── remote_function
 └───base
 ├─── actor
 ├─── backend
 ├─── common
 ├─── object_ref
 └─── remote_function

Unidist High-Level API

This page contains the API provided by the framework for distributed execution of operations.

init

	
unidist.api.init()

	Initialize an execution backend.

Notes

The concrete execution backend can be set via
UNIDIST_BACKEND environment variable or Backend config value.
MPI backend is used by default.

is_initialized

	
unidist.api.is_initialized()

	Check if a unidist backend has already been initialized.

	Returns:

	True or False.

	Return type:

	bool

remote

	
unidist.api.remote(*args, **kwargs)

	Define a remote function or an actor class.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in a remote function or an actor class.

	**kwargs (dict) – Keyword arguments to be passed in a remote function or an actor class.

	Return type:

	RemoteFunction or ActorClass

get

	
unidist.api.get(object_refs)

	Get a remote object or a list of remote objects
from distributed memory.

	Parameters:

	object_refs (ObjectRef or list) – ObjectRef or a list of ObjectRef-s to get data from.

	Returns:

	A Python object or a list of Python objects.

	Return type:

	object

put

	
unidist.api.put(data)

	Put data into distributed memory.

	Parameters:

	data (object) – Data to be put.

	Returns:

	ObjectRef matching to data.

	Return type:

	ObjectRef

wait

	
unidist.api.wait(object_refs, num_returns=1)

	Wait until object_refs are finished.

This method returns two lists. The first list consists of
ObjectRef-s that correspond to objects that completed computations.
The second list corresponds to the rest of the ObjectRef-s (which may or may not be ready).

	Parameters:

	
	object_refs (ObjectRef or list) – ObjectRef or list of ObjectRef-s to be waited.

	num_returns (int, default: 1) – The number of ObjectRef-s that should be returned as ready.

	Returns:

	List of ObjectRef-s that are ready and list of the remaining ObjectRef-s.

	Return type:

	two lists

is_object_ref

	
unidist.api.is_object_ref(obj)

	Whether an object is ObjectRef or not.

	Parameters:

	obj (object) – An object to be checked.

	Returns:

	True if an object is ObjectRef, False otherwise.

	Return type:

	bool

get_ip

	
unidist.api.get_ip()

	Get node IP address.

	Returns:

	Node IP address.

	Return type:

	str

num_cpus

	
unidist.api.num_cpus()

	Get the number of CPUs used by the execution backend.

	Return type:

	int

cluster_resources

	
unidist.api.cluster_resources()

	Get resources of the cluster.

	Returns:

	Dictionary with cluster nodes info in the form
{“node_ip0”: {“CPU”: x0}, “node_ip1”: {“CPU”: x1}, …}.

	Return type:

	dict

Contributing

Certificate of Origin

To keep a clear track of who did what, we use a sign-off procedure (same requirements
for using the signed-off-by process as the Linux kernel has
https://www.kernel.org/doc/html/v4.17/process/submitting-patches.html) on patches or pull
requests that are being sent. The sign-off is a simple line at the end of the explanation
for the patch, which certifies that you wrote it or otherwise have the right to pass it
on as an open-source patch. The rules are pretty simple: if you can certify the below:

CERTIFICATE OF ORIGIN V 1.1

“By making a contribution to this project, I certify that:

1.) The contribution was created in whole or in part by me and I have the right to
submit it under the open source license indicated in the file; or
2.) The contribution is based upon previous work that, to the best of my knowledge, is
covered under an appropriate open source license and I have the right under that license
to submit that work with modifications, whether created in whole or in part by me, under
the same open source license (unless I am permitted to submit under a different
license), as indicated in the file; or
3.) The contribution was provided directly to me by some other person who certified (a),
(b) or (c) and I have not modified it.
4.) I understand and agree that this project and the contribution are public and that a
record of the contribution (including all personal information I submit with it,
including my sign-off) is maintained indefinitely and may be redistributed consistent
with this project or the open source license(s) involved.”

This is my commit message

Signed-off-by: Awesome Developer <developer@example.org>

Code without a proper signoff cannot be merged into the master branch.
Note: You must use your real name (sorry, no pseudonyms or anonymous contributions.)

The text can either be manually added to your commit body, or you can add either -s
or --signoff to your usual git commit commands:

git commit --signoff
git commit -s

This will use your default git configuration which is found in .git/config. To change
this, you can use the following commands:

git config --global user.name "Awesome Developer"
git config --global user.email "awesome.developer.@example.org"

If you have authored a commit that is missing the signed-off-by line, you can amend your
commits and push them to GitHub.

git commit --amend --signoff

If you’ve pushed your changes to GitHub already you’ll need to force push your branch
after this with git push -f.

Commit Message formatting

We request that your first commit follow a particular format, and we
require that your PR title follow the format. The format is:

FEAT-#9999: Add some functionality to enable something

The FEAT component represents the type of commit. This component of the commit
message can be one of the following:

	FEAT: A new feature that is added

	DOCS: Documentation improvements or updates

	FIX: A bugfix contribution

	REFACTOR: Moving or removing code without change in functionality

	TEST: Test updates or improvements

	PERF: Performance enhancements

The #9999 component of the commit message should be the issue number in the unidist
GitHub issue tracker: https://github.com/modin-project/unidist/issues. This is important
because it links commits to their issues.

The commit message should follow a colon (:) and be descriptive and succinct.

A unidist CI job on GitHub will enforce that your pull request title follows the
format we suggest. Note that if you update the PR title, you have to push
another commit (even if it’s empty) or amend your last commit for the job to
pick up the new PR title. Re-running the job in Github Actions won’t work.

General Rules for Committers

	Try to write a PR name as descriptive as possible.

	Try to keep PRs as small as possible. One PR should be making one semantically atomic change.

	Don’t merge your own PRs even if you are technically able to do it.

Development Dependencies

We recommend doing development in a virtualenv or conda environment, though this decision
is ultimately yours. You will want to run the following in order to install all of the required
dependencies for running the tests and formatting the code:

conda env create --file environment_linux.yml # for Linux
conda env create --file environment_win.yml # for Windows
or
pip install -r requirements.txt

Code Formatting and Lint

We use black [https://black.readthedocs.io/en/latest] for code formatting. Before you submit a pull request, please make sure
that you run the following from the project root:

black .

We also use flake8 [http://flake8.pycqa.org/en/latest] to check linting errors. Running the following from the project root
will ensure that it passes the lint checks on Github Actions:

flake8 .

We test that this has been run on our Github Actions [https://github.com/features/actions] test suite. If you do this and find
that the tests are still failing, try updating your version of black and flake8.

Adding a test

If you find yourself fixing a bug or adding a new feature, don’t forget to add a test to
the test suite to verify its correctness! We ask that you follow the existing
structure of the tests for ease of maintenance.

Running the tests

To run the entire test suite, run the following from the project root:

python -m pytest unidist/test

If you’ve only modified a small amount of code, it may be sufficient to run a single test or
some subset of the test suite. In order to run a specific test run:

python -m pytest unidist/test/test_new_functionality.py::test_new_functionality

The entire test suite is automatically run for each pull request.

Building documentation

To build the documentation, please follow the steps below from the project root (it is supposed you have
dependencies from environment_linux.yml or environment_win.yml or requirements.txt installed):

Build unidist to make C++ extensions available and also
for correct module imports when building the documentation.
pip install -e .
cd docs
sphinx-build -b html . build

To visualize the documentation locally, run the following from build folder:

python -m http.server <port>
python -m http.server 1234

then open the browser at 0.0.0.0:<port> (e.g. 0.0.0.0:1234).

Troubleshooting

We hope your experience with Unidist is bug-free, but there are some quirks about Unidist
that may require troubleshooting. If you are still having issues, please open a Github
issue [https://github.com/modin-project/unidist/issues].

Frequently encountered issues

This is a list of the most frequently encountered issues when using Unidist. Some of these
are working as intended, while others are known bugs that are being actively worked on.

Error when using Open MPI while running in a cluster: bash: line 1: orted: command not found

Sometimes, when you run a program with Open MPI in a cluster, you may see the following error:

bash: line 1: orted: command not found
--
ORTE was unable to reliably start one or more daemons.
This usually is caused by:

* not finding the required libraries and/or binaries on
 one or more nodes. Please check your PATH and LD_LIBRARY_PATH
 settings, or configure OMPI with --enable-orterun-prefix-by-default

* lack of authority to execute on one or more specified nodes.
 Please verify your allocation and authorities.

* the inability to write startup files into /tmp (--tmpdir/orte_tmpdir_base).
 Please check with your sys admin to determine the correct location to use.

* compilation of the orted with dynamic libraries when static are required
 (e.g., on Cray). Please check your configure cmd line and consider using
 one of the contrib/platform definitions for your system type.

* an inability to create a connection back to mpirun due to a
 lack of common network interfaces and/or no route found between
 them. Please check network connectivity (including firewalls
 and network routing requirements).
--

Solution

You should add the --prefix parameter to the mpiexec command with the path to the installed
Open MPI library. If you are using a conda environment, then the required path will be:
$CONDA_PATH/envs/<ENV_NAME>.

mpiexec -n 1 --prefix $CONDA_PATH/envs/<ENV_NAME> python script.py

Error when using Open MPI while running in a cluster: OpenSSL version mismatch. Built against 30000020, you have 30100010

Sometimes, when you run a program with Open MPI in a cluster, you may see the following error:

OpenSSL version mismatch. Built against 30000020, you have 30100010
--
ORTE was unable to reliably start one or more daemons.
This usually is caused by:

* not finding the required libraries and/or binaries on
 one or more nodes. Please check your PATH and LD_LIBRARY_PATH
 settings, or configure OMPI with --enable-orterun-prefix-by-default

* lack of authority to execute on one or more specified nodes.
 Please verify your allocation and authorities.

* the inability to write startup files into /tmp (--tmpdir/orte_tmpdir_base).
 Please check with your sys admin to determine the correct location to use.

* compilation of the orted with dynamic libraries when static are required
 (e.g., on Cray). Please check your configure cmd line and consider using
 one of the contrib/platform definitions for your system type.

* an inability to create a connection back to mpirun due to a
 lack of common network interfaces and/or no route found between
 them. Please check network connectivity (including firewalls
 and network routing requirements).
--

This may happen due to the fact that OpenMPI uses OpenSSH
but its version is built on a different version of OpenSSL than yours.

Solution

You should check for version compatibility of OpenSSH and OpenSSL and update them if necessary.

$ openssl version
OpenSSL 3.0.9 30 May 2023 (Library: OpenSSL 3.0.9 30 May 2023)
$ ssh -V
OpenSSH_8.9p1 Ubuntu-3ubuntu0.1, OpenSSL 3.0.2 15 Mar 2022

If you use conda, just add openssh library to your environment.

conda install -c conda-forge openssh

Error when using MPI backend: mpi4py.MPI.Exception: MPI_ERR_SPAWN: could not spawn processes

This error usually happens on Open MPI when you try to start the number of workers exceeding the number of physical cores.
Open MPI binds workers to physical cores by default.

mpi4py.MPI.Exception: MPI_ERR_SPAWN: could not spawn processes
--
Primary job terminated normally, but 1 process returned
a non-zero exit code. Per user-direction, the job has been aborted.
--
--
mpiexec detected that one or more processes exited with non-zero status, thus causing
the job to be terminated. The first process to do so was:

 Process name: [[35427,1],0]
 Exit code: 1
--

Solution

You should add one of the flags below to mpiexec command when running your application.

	--bind-to hwthread

	--use-hwthread-cpus

	--oversubscribe

mpiexec -n 1 --bind-to hwthread python script.py

To get more information about the flags refer to Open MPI’s mpiexec [https://www.open-mpi.org/doc/v3.1/man1/mpiexec.1.php] command documentation.

Error when using MPI backend: There are not enough slots available in the system to satisfy the <N> slots

This error usually happens on Open MPI when you try to start the number of workers exceeding the number of physical cores.
Open MPI binds workers to physical cores by default.

--
There are not enough slots available in the system to satisfy the <N>
slots that were requested by the application:

 python

Either request fewer slots for your application, or make more slots
available for use.

A "slot" is the Open MPI term for an allocatable unit where we can
launch a process. The number of slots available are defined by the
environment in which Open MPI processes are run:

 1. Hostfile, via "slots=N" clauses (N defaults to number of
 processor cores if not provided)
 2. The --host command line parameter, via a ":N" suffix on the
 hostname (N defaults to 1 if not provided)
 3. Resource manager (e.g., SLURM, PBS/Torque, LSF, etc.)
 4. If none of a hostfile, the --host command line parameter, or an
 RM is present, Open MPI defaults to the number of processor cores

In all the above cases, if you want Open MPI to default to the number
of hardware threads instead of the number of processor cores, use the
--use-hwthread-cpus option.

Alternatively, you can use the --oversubscribe option to ignore the
number of available slots when deciding the number of processes to
launch.
--

Solution

You should add one of the flags below to mpiexec command when running your application to allow Open MPI
to start the number of workers exceeding the number of physical cores.

	--bind-to hwthread

	--use-hwthread-cpus

	--oversubscribe

mpiexec -n 1 --bind-to hwthread python script.py

To get more information about the flags refer to Open MPI’s mpiexec [https://www.open-mpi.org/doc/v3.1/man1/mpiexec.1.php] command documentation.

Shared object store for MPI backend is not supported in C/W model for MPICH version less than 4.2.0

MPICH versions less than 4.2.0 have an issue related to shared memory feature in Controller/Worker model.

Solution

You can run your script using MPICH in SPMD model, or use other MPI implementations
such as Open MPI, Intel MPI, or MPICH above 4.2.0.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	_buffer_callback() (unidist.core.backends.mpi.core.serialization.ComplexDataSerializer method)

 	_cpkl_encode() (unidist.core.backends.mpi.core.serialization.ComplexDataSerializer method)

 	_dataframe_encode() (unidist.core.backends.mpi.core.serialization.ComplexDataSerializer method)

 	_decode_custom() (unidist.core.backends.mpi.core.serialization.ComplexDataSerializer method)

 	_deserialization_helper() (unidist.core.backends.dask.actor.DaskActor class method)

 	(unidist.core.backends.mpi.actor.MPIActor class method)

 	(unidist.core.backends.ray.actor.RayActor class method)

 	_encode_custom() (unidist.core.backends.mpi.core.serialization.ComplexDataSerializer method)

 	_pkl_encode() (unidist.core.backends.mpi.core.serialization.ComplexDataSerializer method)

 	_remote() (unidist.core.backends.dask.actor.DaskActor method)

 	(unidist.core.backends.dask.actor.DaskActorMethod method)

 	(unidist.core.backends.dask.remote_function.DaskRemoteFunction method)

 	(unidist.core.backends.mpi.actor.MPIActor method)

 	(unidist.core.backends.mpi.actor.MPIActorMethod method)

 	(unidist.core.backends.mpi.remote_function.MPIRemoteFunction method)

 	(unidist.core.backends.pymp.actor.PyMpActor method)

 	(unidist.core.backends.pymp.actor.PyMpActorMethod method)

 	(unidist.core.backends.pymp.remote_function.PyMpRemoteFunction method)

 	(unidist.core.backends.pyseq.actor.PySeqActor method)

 	(unidist.core.backends.pyseq.actor.PySeqActorMethod method)

 	(unidist.core.backends.pyseq.remote_function.PySeqRemoteFunction method)

 	(unidist.core.backends.ray.actor.RayActor method)

 	(unidist.core.backends.ray.actor.RayActorMethod method)

 	(unidist.core.backends.ray.remote_function.RayRemoteFunction method)

 	
 	_serialization_helper() (unidist.core.backends.dask.actor.DaskActor method)

 	(unidist.core.backends.mpi.actor.MPIActor method)

 	(unidist.core.backends.ray.actor.RayActor method)

A

 	
 	Actor (class in unidist.core.backends.pymp.core.actor)

 	(class in unidist.core.base.actor)

 	ACTOR_CREATE (unidist.core.backends.mpi.core.common.Operation attribute)

 	ACTOR_EXECUTE (unidist.core.backends.mpi.core.common.Operation attribute)

 	
 	ActorClass (class in unidist.core.base.actor)

 	ActorMethod (class in unidist.core.backends.pymp.core.actor)

 	(class in unidist.core.base.actor)

 	add_task() (unidist.core.backends.pymp.core.process_manager.Worker method)

 	AsyncOperations (class in unidist.core.backends.mpi.core.async_operations)

B

 	
 	Backend (class in unidist.core.base.backend)

 	
 	BackendProxy (class in unidist.core.base.backend)

C

 	
 	cache_send_info() (unidist.core.backends.mpi.core.local_object_store.LocalObjectStore method)

 	cache_serialized_data() (unidist.core.backends.mpi.core.local_object_store.LocalObjectStore method)

 	CANCEL (unidist.core.backends.mpi.core.common.Operation attribute)

 	check() (unidist.core.backends.mpi.core.async_operations.AsyncOperations method)

 	check_mpich_version() (in module unidist.core.backends.mpi.core.common)

 	check_pending_actor_tasks() (unidist.core.backends.mpi.core.worker.task_store.TaskStore method)

 	check_pending_get_requests() (unidist.core.backends.mpi.core.worker.request_store.RequestStore method)

 	check_pending_tasks() (unidist.core.backends.mpi.core.worker.task_store.TaskStore method)

 	check_pending_wait_requests() (unidist.core.backends.mpi.core.worker.request_store.RequestStore method)

 	CLEANUP (unidist.core.backends.mpi.core.common.Operation attribute)

 	clear() (unidist.core.backends.mpi.core.local_object_store.LocalObjectStore method)

 	clear_get_requests() (unidist.core.backends.mpi.core.worker.request_store.RequestStore method)

 	clear_pending_actor_tasks() (unidist.core.backends.mpi.core.worker.task_store.TaskStore method)

 	clear_pending_tasks() (unidist.core.backends.mpi.core.worker.task_store.TaskStore method)

 	
 	clear_wait_requests() (unidist.core.backends.mpi.core.worker.request_store.RequestStore method)

 	cluster_resources() (in module unidist.api)

 	(unidist.core.backends.dask.backend.DaskBackend static method)

 	(unidist.core.backends.mpi.backend.MPIBackend static method)

 	(unidist.core.backends.pymp.backend.PyMpBackend static method)

 	(unidist.core.backends.pyseq.backend.PySeqBackend static method)

 	(unidist.core.backends.ray.backend.RayBackend static method)

 	(unidist.core.base.backend.Backend static method)

 	(unidist.core.base.backend.BackendProxy method)

 	collect() (unidist.core.backends.mpi.core.controller.garbage_collector.GarbageCollector method)

 	ComplexDataSerializer (class in unidist.core.backends.mpi.core.serialization)

 	contains() (unidist.core.backends.mpi.core.local_object_store.LocalObjectStore method)

 	(unidist.core.backends.mpi.core.shared_object_store.SharedObjectStore method)

 	contains_data_owner() (unidist.core.backends.mpi.core.local_object_store.LocalObjectStore method)

D

 	
 	DaskActor (class in unidist.core.backends.dask.actor)

 	DaskActorMethod (class in unidist.core.backends.dask.actor)

 	DaskBackend (class in unidist.core.backends.dask.backend)

 	DaskRemoteFunction (class in unidist.core.backends.dask.remote_function)

 	DATA (unidist.core.backends.mpi.core.worker.request_store.RequestStore attribute)

 	
 	DataID (class in unidist.core.backends.common.data_id)

 	delete_service_info() (unidist.core.backends.mpi.core.shared_object_store.SharedObjectStore method)

 	deserialize() (unidist.core.backends.mpi.core.serialization.ComplexDataSerializer method)

 	deserialize_cloudpickle() (unidist.core.backends.mpi.core.serialization.SimpleDataSerializer method)

 	deserialize_pickle() (unidist.core.backends.mpi.core.serialization.SimpleDataSerializer method)

 	discard_data_request() (unidist.core.backends.mpi.core.worker.request_store.RequestStore method)

E

 	
 	EnvironmentVariable (class in unidist.config.parameter)

 	EXECUTE (unidist.core.backends.mpi.core.common.Operation attribute)

 	
 	execute_received_task() (unidist.core.backends.mpi.core.worker.task_store.TaskStore method)

 	extend() (unidist.core.backends.mpi.core.async_operations.AsyncOperations method)

F

 	
 	filter_arguments() (in module unidist.core.base.common)

 	finalize() (unidist.core.backends.mpi.core.shared_object_store.SharedObjectStore method)

 	
 	finish() (unidist.core.backends.mpi.core.async_operations.AsyncOperations method)

 	free_worker() (unidist.core.backends.pymp.core.process_manager.ProcessManager method)

G

 	
 	GarbageCollector (class in unidist.core.backends.mpi.core.controller.garbage_collector)

 	generate_data_id() (unidist.core.backends.mpi.core.local_object_store.LocalObjectStore method)

 	generate_output_data_id() (unidist.core.backends.mpi.core.local_object_store.LocalObjectStore method)

 	GET (unidist.core.backends.mpi.core.common.Operation attribute)

 	(unidist.core.backends.mpi.core.worker.request_store.RequestStore attribute)

 	get() (in module unidist.api)

 	(in module unidist.core.backends.mpi.core.controller.api)

 	(in module unidist.core.backends.pymp.core.api)

 	(in module unidist.core.backends.pyseq.core.api)

 	(unidist.config.parameter.EnvironmentVariable class method)

 	(unidist.core.backends.dask.backend.DaskBackend static method)

 	(unidist.core.backends.mpi.backend.MPIBackend static method)

 	(unidist.core.backends.mpi.core.local_object_store.LocalObjectStore method)

 	(unidist.core.backends.mpi.core.shared_object_store.SharedObjectStore method)

 	(unidist.core.backends.pymp.backend.PyMpBackend static method)

 	(unidist.core.backends.pymp.core.object_store.ObjectStore method)

 	(unidist.core.backends.pyseq.backend.PySeqBackend static method)

 	(unidist.core.backends.pyseq.core.object_store.ObjectStore method)

 	(unidist.core.backends.ray.backend.RayBackend static method)

 	(unidist.core.base.backend.Backend static method)

 	(unidist.core.base.backend.BackendProxy method)

 	get_data_owner() (unidist.core.backends.mpi.core.local_object_store.LocalObjectStore method)

 	get_instance() (unidist.core.backends.mpi.core.async_operations.AsyncOperations class method)

 	(unidist.core.backends.mpi.core.local_object_store.LocalObjectStore class method)

 	(unidist.core.backends.mpi.core.shared_object_store.SharedObjectStore class method)

 	(unidist.core.backends.mpi.core.worker.request_store.RequestStore class method)

 	(unidist.core.backends.mpi.core.worker.task_store.TaskStore class method)

 	(unidist.core.backends.pymp.core.object_store.ObjectStore class method)

 	(unidist.core.backends.pymp.core.process_manager.ProcessManager class method)

 	(unidist.core.backends.pyseq.core.object_store.ObjectStore class method)

 	(unidist.core.base.backend.BackendProxy class method)

 	
 	get_ip() (in module unidist.api)

 	(unidist.core.backends.dask.backend.DaskBackend static method)

 	(unidist.core.backends.mpi.backend.MPIBackend static method)

 	(unidist.core.backends.pymp.backend.PyMpBackend static method)

 	(unidist.core.backends.pyseq.backend.PySeqBackend static method)

 	(unidist.core.backends.ray.backend.RayBackend static method)

 	(unidist.core.base.backend.Backend static method)

 	(unidist.core.base.backend.BackendProxy method)

 	get_logger() (in module unidist.core.backends.mpi.core.common)

 	get_ref_number() (unidist.core.backends.mpi.core.shared_object_store.SharedObjectStore method)

 	get_serialized_data() (unidist.core.backends.mpi.core.local_object_store.LocalObjectStore method)

 	get_shared_buffer() (unidist.core.backends.mpi.core.shared_object_store.SharedObjectStore method)

 	get_shared_info() (unidist.core.backends.mpi.core.shared_object_store.SharedObjectStore method)

 	GET_TASK_COUNT (unidist.core.backends.mpi.core.common.Operation attribute)

 	grab_worker() (unidist.core.backends.pymp.core.process_manager.ProcessManager method)

I

 	
 	increment_task_counter() (unidist.core.backends.mpi.core.controller.garbage_collector.GarbageCollector method)

 	init() (in module unidist.api)

 	(in module unidist.core.backends.mpi.core.controller.api)

 	(in module unidist.core.backends.pymp.core.api)

 	(in module unidist.core.backends.pyseq.core.api)

 	is_allocated() (unidist.core.backends.mpi.core.shared_object_store.SharedObjectStore method)

 	is_already_sent() (unidist.core.backends.mpi.core.local_object_store.LocalObjectStore method)

 	is_already_serialized() (unidist.core.backends.mpi.core.local_object_store.LocalObjectStore method)

 	is_data_already_requested() (unidist.core.backends.mpi.core.worker.request_store.RequestStore method)

 	is_initialized() (in module unidist.api)

 	(in module unidist.core.backends.mpi.core.controller.api)

 	(in module unidist.core.backends.pymp.core.api)

 	(in module unidist.core.backends.pyseq.core.api)

 	(unidist.core.backends.dask.backend.DaskBackend static method)

 	(unidist.core.backends.mpi.backend.MPIBackend static method)

 	(unidist.core.backends.pymp.backend.PyMpBackend static method)

 	(unidist.core.backends.pyseq.backend.PySeqBackend static method)

 	(unidist.core.backends.ray.backend.RayBackend method)

 	(unidist.core.base.backend.Backend static method)

 	(unidist.core.base.backend.BackendProxy method)

 	
 	is_object_ref() (in module unidist.api)

 	(unidist.core.base.backend.BackendProxy static method)

 	is_shared_memory_supported() (in module unidist.core.backends.mpi.core.common)

 	isend_complex_data() (in module unidist.core.backends.mpi.core.communication)

 	isend_complex_operation() (in module unidist.core.backends.mpi.core.communication)

 	isend_serialized_operation() (in module unidist.core.backends.mpi.core.communication)

 	isend_simple_operation() (in module unidist.core.backends.mpi.core.communication)

L

 	
 	LocalObjectStore (class in unidist.core.backends.mpi.core.local_object_store)

M

 	
 	make_actor() (unidist.core.backends.dask.backend.DaskBackend static method)

 	(unidist.core.backends.mpi.backend.MPIBackend static method)

 	(unidist.core.backends.pymp.backend.PyMpBackend static method)

 	(unidist.core.backends.pyseq.backend.PySeqBackend static method)

 	(unidist.core.backends.ray.backend.RayBackend static method)

 	(unidist.core.base.backend.Backend static method)

 	(unidist.core.base.backend.BackendProxy method)

 	make_remote_function() (unidist.core.backends.dask.backend.DaskBackend static method)

 	(unidist.core.backends.mpi.backend.MPIBackend static method)

 	(unidist.core.backends.pymp.backend.PyMpBackend static method)

 	(unidist.core.backends.pyseq.backend.PySeqBackend static method)

 	(unidist.core.backends.ray.backend.RayBackend static method)

 	(unidist.core.base.backend.Backend static method)

 	(unidist.core.base.backend.BackendProxy method)

 	materialize_data_ids() (in module unidist.core.backends.mpi.core.common)

 	
 	maybe_update_data_id_map() (unidist.core.backends.mpi.core.local_object_store.LocalObjectStore method)

 	monitor_loop() (in module unidist.core.backends.mpi.core.monitor.loop)

 	mpi_busy_wait_recv() (in module unidist.core.backends.mpi.core.communication)

 	mpi_isend_buffer() (in module unidist.core.backends.mpi.core.communication)

 	mpi_isend_object() (in module unidist.core.backends.mpi.core.communication)

 	mpi_recv_buffer() (in module unidist.core.backends.mpi.core.communication)

 	mpi_recv_object() (in module unidist.core.backends.mpi.core.communication)

 	mpi_recv_operation() (in module unidist.core.backends.mpi.core.communication)

 	mpi_send_buffer() (in module unidist.core.backends.mpi.core.communication)

 	mpi_send_object() (in module unidist.core.backends.mpi.core.communication)

 	MPIActor (class in unidist.core.backends.mpi.actor)

 	MPIActorMethod (class in unidist.core.backends.mpi.actor)

 	MPIBackend (class in unidist.core.backends.mpi.backend)

 	MpiDataID (class in unidist.core.backends.mpi.core.common)

 	MPIRemoteFunction (class in unidist.core.backends.mpi.remote_function)

N

 	
 	num_cpus() (in module unidist.api)

 	(unidist.core.backends.dask.backend.DaskBackend static method)

 	(unidist.core.backends.mpi.backend.MPIBackend static method)

 	(unidist.core.backends.pymp.backend.PyMpBackend static method)

 	(unidist.core.backends.pyseq.backend.PySeqBackend static method)

 	(unidist.core.backends.ray.backend.RayBackend static method)

 	(unidist.core.base.backend.Backend static method)

 	(unidist.core.base.backend.BackendProxy method)

O

 	
 	ObjectRef (class in unidist.core.base.object_ref)

 	ObjectStore (class in unidist.core.backends.pymp.core.object_store)

 	(class in unidist.core.backends.pyseq.core.object_store)

 	
 	Operation (class in unidist.core.backends.mpi.core.common)

 	options() (unidist.core.base.actor.ActorClass method)

 	(unidist.core.base.actor.ActorMethod method)

 	(unidist.core.base.remote_function.RemoteFunction method)

P

 	
 	process_get_request() (unidist.core.backends.mpi.core.worker.request_store.RequestStore method)

 	process_task_request() (unidist.core.backends.mpi.core.worker.task_store.TaskStore method)

 	process_wait_request() (unidist.core.backends.mpi.core.worker.request_store.RequestStore method)

 	ProcessManager (class in unidist.core.backends.pymp.core.process_manager)

 	put() (in module unidist.api)

 	(in module unidist.core.backends.mpi.core.controller.api)

 	(in module unidist.core.backends.pymp.core.api)

 	(in module unidist.core.backends.pyseq.core.api)

 	(unidist.config.parameter.EnvironmentVariable class method)

 	(unidist.core.backends.dask.backend.DaskBackend static method)

 	(unidist.core.backends.mpi.backend.MPIBackend static method)

 	(unidist.core.backends.mpi.core.local_object_store.LocalObjectStore method)

 	(unidist.core.backends.mpi.core.shared_object_store.SharedObjectStore method)

 	(unidist.core.backends.mpi.core.worker.request_store.RequestStore method)

 	(unidist.core.backends.mpi.core.worker.task_store.TaskStore method)

 	(unidist.core.backends.pymp.backend.PyMpBackend static method)

 	(unidist.core.backends.pymp.core.object_store.ObjectStore method)

 	(unidist.core.backends.pyseq.backend.PySeqBackend static method)

 	(unidist.core.backends.pyseq.core.object_store.ObjectStore method)

 	(unidist.core.backends.ray.backend.RayBackend static method)

 	(unidist.core.base.backend.Backend static method)

 	(unidist.core.base.backend.BackendProxy method)

 	
 	put_actor() (unidist.core.backends.mpi.core.worker.task_store.TaskStore method)

 	PUT_DATA (unidist.core.backends.mpi.core.common.Operation attribute)

 	put_data_owner() (unidist.core.backends.mpi.core.local_object_store.LocalObjectStore method)

 	PUT_OWNER (unidist.core.backends.mpi.core.common.Operation attribute)

 	PUT_SHARED_DATA (unidist.core.backends.mpi.core.common.Operation attribute)

 	PyMpActor (class in unidist.core.backends.pymp.actor)

 	PyMpActorMethod (class in unidist.core.backends.pymp.actor)

 	PyMpBackend (class in unidist.core.backends.pymp.backend)

 	PyMpRemoteFunction (class in unidist.core.backends.pymp.remote_function)

 	PySeqActor (class in unidist.core.backends.pyseq.actor)

 	PySeqActorMethod (class in unidist.core.backends.pyseq.actor)

 	PySeqBackend (class in unidist.core.backends.pyseq.backend)

 	PySeqRemoteFunction (class in unidist.core.backends.pyseq.remote_function)

R

 	
 	RayActor (class in unidist.core.backends.ray.actor)

 	RayActorMethod (class in unidist.core.backends.ray.actor)

 	RayBackend (class in unidist.core.backends.ray.backend)

 	RayRemoteFunction (class in unidist.core.backends.ray.remote_function)

 	READY_TO_SHUTDOWN (unidist.core.backends.mpi.core.common.Operation attribute)

 	recv_complex_data() (in module unidist.core.backends.mpi.core.communication)

 	recv_serialized_data() (in module unidist.core.backends.mpi.core.communication)

 	regular_cleanup() (unidist.core.backends.mpi.core.controller.garbage_collector.GarbageCollector method)

 	remote() (in module unidist.api)

 	(unidist.core.base.actor.ActorClass method)

 	(unidist.core.base.actor.ActorMethod method)

 	(unidist.core.base.remote_function.RemoteFunction method)

 	
 	RemoteFunction (class in unidist.core.base.remote_function)

 	REQUEST_SHARED_DATA (unidist.core.backends.mpi.core.common.Operation attribute)

 	request_worker_data() (unidist.core.backends.mpi.core.worker.task_store.TaskStore method)

 	RequestStore (class in unidist.core.backends.mpi.core.worker.request_store)

 	RESERVE_SHARED_MEMORY (unidist.core.backends.mpi.core.common.Operation attribute)

 	run() (unidist.core.backends.pymp.core.process_manager.Worker method)

S

 	
 	schedule_rank() (in module unidist.core.backends.mpi.core.controller.common.RoundRobin)

 	send_complex_data() (in module unidist.core.backends.mpi.core.communication)

 	send_simple_operation() (in module unidist.core.backends.mpi.core.communication)

 	serialize() (unidist.core.backends.mpi.core.serialization.ComplexDataSerializer method)

 	serialize_cloudpickle() (unidist.core.backends.mpi.core.serialization.SimpleDataSerializer method)

 	serialize_pickle() (unidist.core.backends.mpi.core.serialization.SimpleDataSerializer method)

 	SharedObjectStore (class in unidist.core.backends.mpi.core.shared_object_store)

 	should_be_shared() (unidist.core.backends.mpi.core.shared_object_store.SharedObjectStore method)

 	SHUTDOWN (unidist.core.backends.mpi.core.common.Operation attribute)

 	shutdown() (in module unidist.core.backends.mpi.core.controller.api)

 	(unidist.core.backends.dask.backend.DaskBackend static method)

 	(unidist.core.backends.mpi.backend.MPIBackend static method)

 	(unidist.core.backends.pymp.backend.PyMpBackend static method)

 	(unidist.core.backends.ray.backend.RayBackend static method)

 	(unidist.core.base.backend.Backend static method)

 	(unidist.core.base.backend.BackendProxy method)

 	
 	SimpleDataSerializer (class in unidist.core.backends.mpi.core.serialization)

 	submit() (in module unidist.core.backends.mpi.core.controller.api)

 	(in module unidist.core.backends.pymp.core.api)

 	(in module unidist.core.backends.pyseq.core.api)

 	(unidist.core.backends.pymp.core.actor.Actor method)

 	(unidist.core.backends.pymp.core.actor.ActorMethod method)

 	(unidist.core.backends.pymp.core.process_manager.ProcessManager method)

T

 	
 	Task (class in unidist.core.backends.pymp.core.process_manager)

 	
 	TASK_DONE (unidist.core.backends.mpi.core.common.Operation attribute)

 	TaskStore (class in unidist.core.backends.mpi.core.worker.task_store)

U

 	
 	unwrap_local_data_id() (unidist.core.backends.mpi.core.worker.task_store.TaskStore method)

 	
 	unwrap_object_refs() (in module unidist.core.backends.common.utils)

 	unwrapped_data_ids_list() (in module unidist.core.backends.mpi.core.common)

W

 	
 	WAIT (unidist.core.backends.mpi.core.common.Operation attribute)

 	(unidist.core.backends.mpi.core.worker.request_store.RequestStore attribute)

 	wait() (in module unidist.api)

 	(in module unidist.core.backends.mpi.core.controller.api)

 	(in module unidist.core.backends.pymp.core.api)

 	(unidist.core.backends.dask.backend.DaskBackend static method)

 	(unidist.core.backends.mpi.backend.MPIBackend static method)

 	(unidist.core.backends.pymp.backend.PyMpBackend static method)

 	(unidist.core.backends.pymp.core.object_store.ObjectStore method)

 	(unidist.core.backends.pyseq.backend.PySeqBackend static method)

 	(unidist.core.backends.ray.backend.RayBackend static method)

 	(unidist.core.base.backend.Backend static method)

 	(unidist.core.base.backend.BackendProxy method)

 	
 	Worker (class in unidist.core.backends.pymp.core.process_manager)

 	worker_loop() (in module unidist.core.backends.mpi.core.worker.loop)

Build wheels

To build unidist wheels, use the following method:

Fresh clone unidist
$ git clone git@github.com:modin-project/unidist.git
$ cd unidist
Build wheels. Wheels must be built per-distribution
$ python setup.py sdist bdist_wheel --plat-name manylinux1_x86_64
$ python setup.py sdist bdist_wheel --plat-name manylinux1_i686
$ python setup.py sdist bdist_wheel --plat-name win32
$ python setup.py sdist bdist_wheel --plat-name win_amd64
$ python setup.py sdist bdist_wheel --plat-name macosx_10_9_x86_64

You may see the wheel in the dist folder: ls -l dist. Make sure the version is correct.
Also make sure there is a tar file that contains the source.

Upload wheels

Use twine to upload wheels:

$ twine upload dist/*

Check with pip install

Run pip install -U unidist[all] on Linux and Windows systems in a new environment
to test that the wheels were uploaded correctly.

Unidist Configuration Settings

Using these configuration settings, the user can tune unidist’s behavior. Below you can find
configuration settings currently provided by unidist.

Public API

Potentially, the source of configuration settings can be any, but for now only environment
variables are implemented. Any environment variable originates from
EnvironmentVariable, which contains most of
the config API implementation.

	
class unidist.config.parameter.EnvironmentVariable

	Base class for environment variables-based configuration.

	
classmethod get()

	Get config value.

	Returns:

	Decoded and verified config value.

	Return type:

	Any

	
classmethod put(value)

	Set config value.

	Parameters:

	value (Any) – Config value to set.

Unidist Configuration Settings List

	Config Name

	Env. Variable Name

	Description

	Backend

	UNIDIST_BACKEND

	Distribution backend to run queries by

	CpuCount

	UNIDIST_CPUS

	How many CPU cores to use during initialization of the unidist backend

	RayGpuCount

	UNIDIST_RAY_GPUS

	How many GPU devices to use during initialization of the Ray backend

	IsRayCluster

	UNIDIST_RAY_CLUSTER

	Whether Ray is running on pre-initialized Ray cluster

	RayRedisAddress

	UNIDIST_RAY_REDIS_ADDRESS

	Redis address to connect to when running in Ray cluster

	RayRedisPassword

	UNIDIST_RAY_REDIS_PASSWORD

	What password to use for connecting to Redis

	RayObjectStoreMemory

	UNIDIST_RAY_OBJECT_STORE_MEMORY

	How many bytes of memory to start the Ray object store with

	DaskMemoryLimit

	UNIDIST_DASK_MEMORY_LIMIT

	How many bytes of memory that Dask worker should use

	IsDaskCluster

	UNIDIST_DASK_CLUSTER

	Whether Dask is running on pre-initialized Dask cluster

	DaskSchedulerAddress

	UNIDIST_DASK_SCHEDULER_ADDRESS

	Dask Scheduler address to connect to when running in Dask cluster

	MpiSpawn

	UNIDIST_MPI_SPAWN

	Whether to enable MPI spawn or not

	MpiHosts

	UNIDIST_MPI_HOSTS

	MPI hosts to run unidist on

	MpiPickleThreshold

	UNIDIST_MPI_PICKLE_THRESHOLD

	Minimum buffer size for serialization with pickle 5 protocol

	MpiBackoff

	UNIDIST_MPI_BACKOFF

	Backoff time for preventing the “busy wait” in loops exchanging messages

	MpiLog

	UNIDIST_MPI_LOG

	Whether to enable logging for MPI backend or not

	MpiSharedObjectStore

	UNIDIST_MPI_SHARED_OBJECT_STORE

	Whether to enable shared object store or not

	MpiSharedObjectStoreMemory

	UNIDIST_MPI_SHARED_OBJECT_STORE_MEMORY

	How many bytes of memory to start the shared object store with

	MpiSharedServiceMemory

	UNIDIST_MPI_SHARED_SERVICE_MEMORY

	How many bytes of memory to start the shared service memory with

	MpiSharedObjectStoreThreshold

	UNIDIST_MPI_SHARED_OBJECT_STORE_THRESHOLD

	Minimum size of data to put into the shared object store

	MpiRuntimeEnv

	Only the config API is available

	Runtime environment for MPI worker processes

Usage Guide

As it can be seen below a config value can be set either by setting the environment variable or
by using config API.

import os

Setting `UNIDIST_BACKEND` environment variable.
Also can be set outside the script.
os.environ["UNIDIST_BACKEND"] = "mpi"

import unidist.config as cfg

Checking initially set `Backend` config,
which corresponds to `UNIDIST_BACKEND` environment variable
print(cfg.Backend.get()) # prints 'mpi'

Checking default value of `CpuCount`
print(cfg.CpuCount.get()) # prints the number of CPUs on your machine

Changing value of `CpuCount`
cfg.CpuCount.put(16)
print(cfg.CpuCount.get()) # prints '16'

Note

Make sure that setting configuration values happens before unidist initialization
(init() call)! Otherwise, unidist will opt for the default settings.

Unique Data Identifier

The backends that do not have own implementation of future object like ray.ObjectRef use DataID objects
to associate with data objects in backend-specific object storages.

	
class unidist.core.backends.common.data_id.DataID(id_value=None)

	Class that holds unique identifier.

	Parameters:

	id_value (object) – Any comparable and hashable ID value.

Common Utilities

	
unidist.core.backends.common.utils.unwrap_object_refs(obj_refs)

	Find all unidist.core.base.ObjectRef instances and unwrap underlying objects.

	Parameters:

	obj_refs (iterable or ObjectRef) – Iterable objects to transform recursively.

	Return type:

	iterable or underlying object of ObjectRef

DaskActor

The class is specific implementation of Actor class using Dask.

The DaskActor implements 2 internal methods:

	__getattr__() – transmits an access responsibility
to the methods of native Dask actor [https://distributed.dask.org/en/latest/actors.html], held by this class, to DaskActorMethod
class.

	_remote() – creates native Dask actor [https://distributed.dask.org/en/latest/actors.html] object to be
held by this class.

API

	
class unidist.core.backends.dask.actor.DaskActor(cls, num_cpus, resources, actor_handle=None)

	The class implements the interface in Actor using Dask backend.

	Parameters:

	
	cls (object) – Class to be an actor class.

	num_cpus (int) – The number of CPUs to reserve for the lifetime of the actor.

	resources (dict) – Custom resources to reserve for the lifetime of the actor.

	actor_handle (None or distributed.actor.Actor) – Used for proper serialization/deserialization via __reduce__.

	
classmethod _deserialization_helper(state)

	Helper to restore the state of the object.

This is defined to make pickling work via __reduce__.

	Parameters:

	state (dict) – The serialized state of the object.

	Return type:

	DaskActor

	
_remote(*args, num_cpus=None, resources=None, **kwargs)

	Create actor class, specific for Dask backend, from self._cls.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in self._cls class constructor.

	num_cpus (int, optional) – The number of CPUs to reserve for the lifetime of the actor.

	resources (dict, optional) – Custom resources to reserve for the lifetime of the actor.

	**kwargs (dict) – Keyword arguments to be passed in self._cls class constructor.

	Return type:

	DaskActor

	
_serialization_helper()

	Helper to save the state of the object.

This is defined to make pickling work via __reduce__.

	Returns:

	A dictionary of the information needed to reconstruct the object.

	Return type:

	dict

DaskActorMethod

The class is specific implementation of ActorMethod class using Dask.

The DaskActorMethod implements internal method
_remote() that is responsible for
calls of native Dask actor [https://distributed.dask.org/en/latest/actors.html] class methods.

API

	
class unidist.core.backends.dask.actor.DaskActorMethod(cls, method_name)

	The class implements the interface in ActorMethod using Dask backend.

	Parameters:

	
	cls (distributed.actor.Actor) – An actor class from which method method_name will be called.

	method_name (str) – The name of the method to be called.

	
_remote(*args, num_returns=None, **kwargs)

	Execute self._method_name in a worker process.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in the method.

	num_returns (int, optional) – Number of results to be returned. If it isn’t
provided, self._num_returns will be used.

	**kwargs (dict) – Keyword arguments to be passed in the method.

	Returns:

	Type of returns depends on num_returns value:

	if num_returns == 1, ObjectRef will be returned.

	if num_returns > 1, list of ObjectRef will be returned.

	if num_returns == 0, None will be returned.

	Return type:

	ObjectRef, list or None

DaskBackend

The class is specific implementation of Backend interface using Dask.

API

	
class unidist.core.backends.dask.backend.DaskBackend

	The class that implements the interface in Backend using Dask.

	
static cluster_resources()

	Get resources of Dask cluster.

	Returns:

	Dictionary with cluster nodes info in the form
{“node_ip0”: {“CPU”: x0}, “node_ip1”: {“CPU”: x1}, …}.

	Return type:

	dict

	
static get(futures)

	Get a remote object or a list of remote objects
from distributed memory.

	Parameters:

	futures (distributed.client.Future or a list of distributed.client.Future-s) – Dask Future or a list of Dask Future objects to get data from.

	Returns:

	A Python object or a list of Python objects.

	Return type:

	object

	
static get_ip()

	Get node IP address.

	Returns:

	Node IP address.

	Return type:

	str

	
static is_initialized()

	Check if Dask backend has already been initialized.

	Returns:

	True or False.

	Return type:

	bool

	
static make_actor(cls, num_cpus, resources)

	Define an actor class.

	clsobject
	Class to be an actor class.

	num_cpusint
	The number of CPUs to reserve for the lifetime of the actor.

	resourcesdict
	Custom resources to reserve for the lifetime of the actor.

	Returns:

	
	DaskActor – The actor class type to create.

	list – The list of arguments for DaskActor constructor.

	
static make_remote_function(function, num_cpus, num_returns, resources)

	Define a remote function.

	functioncallable
	Function to be a remote function.

	num_cpusint
	The number of CPUs to reserve for the remote function.

	num_returnsint
	The number of ObjectRef-s returned by the remote function invocation.

	resourcesdict
	Custom resources to reserve for the remote function.

	Return type:

	DaskRemoteFunction

	
static num_cpus()

	Get the number of CPUs used by the execution backend.

	Return type:

	int

	
static put(data)

	Put data into distributed memory.

	Parameters:

	data (object) – Data to be put.

	Returns:

	Dask Future matching to data.

	Return type:

	distributed.client.Future

	
static shutdown()

	Shutdown Dask execution backend.

	
static wait(futures, num_returns=1)

	Wait until futures are finished.

This method returns two lists. The first list consists of
futures that correspond to objects that completed computations.
The second list corresponds to the rest of the futures (which may or may not be ready).

	Parameters:

	
	futures (distributed.client.Future or list) – Dask Future or list of Dask Futures to be waited.

	num_returns (int, default: 1) – The number of Dask Futures that should be returned as ready.

	Returns:

	Two lists of futures that are ready and list of the remaining futures.

	Return type:

	tuple

DaskRemoteFunction

The class is specific implementation of RemoteFunction class using Dask.

The DaskRemoteFunction implements internal
method _remote()
that transmites execution of operations to Dask.

API

	
class unidist.core.backends.dask.remote_function.DaskRemoteFunction(function, num_cpus, num_returns, resources)

	The class that implements the interface in RemoteFunction using Dask.

	Parameters:

	
	function (callable) – A function to be called remotely.

	num_cpus (int) – The number of CPUs to reserve for the remote function.

	num_returns (int) – The number of ObjectRef-s returned by the remote function invocation.

	resources (dict) – Custom resources to reserve for the remote function.

	
_remote(*args, num_cpus=None, num_returns=None, resources=None, **kwargs)

	Execute self._remote_function in a worker process.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in the self._remote_function.

	num_cpus (int, optional) – The number of CPUs to reserve for the remote function.

	num_returns (int, optional) – The number of ObjectRef-s returned by the remote function invocation.

	resources (dict, optional) – Custom resources to reserve for the remote function.

	**kwargs (dict) – Keyword arguments to be passed in the self._remote_function.

	Returns:

	Type of returns depends on num_returns value:

	if num_returns == 1, ObjectRef will be returned.

	if num_returns > 1, list of ObjectRef will be returned.

	if num_returns == 0, None will be returned.

	Return type:

	ObjectRef, list or None

MPIActor

The class is specific implementation of Actor class using MPI.

The MPIActor implements 2 internal methods:

	__getattr__() – transmits an access responsibility
to the methods of native MPI Actor,
held by this class, to MPIActorMethod class.

	_remote() – creates native
MPI Actor object to be held by this class.

API

	
class unidist.core.backends.mpi.actor.MPIActor(cls, num_cpus, resources, actor_handle=None)

	The class implements the interface in Actor using MPI backend.

	Parameters:

	
	cls (object) – Class to be an actor class.

	num_cpus (int) – The number of CPUs to reserve for the lifetime of the actor.

	resources (dict) – Custom resources to reserve for the lifetime of the actor.

	actor_handle (None or unidist.core.backends.mpi.core.Actor) – Used for proper serialization/deserialization via __reduce__.

	
classmethod _deserialization_helper(state)

	Helper to restore the state of the object.

This is defined to make pickling work via __reduce__.

	Parameters:

	state (dict) – The serialized state of the object.

	Return type:

	MPIActor

	
_remote(*args, num_cpus=None, resources=None, **kwargs)

	Create actor class, specific for MPI backend, from self._cls.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in self._cls class constructor.

	num_cpus (int, optional) – The number of CPUs to reserve for the lifetime of the actor.

	resources (dict, optional) – Custom resources to reserve for the lifetime of the actor.

	**kwargs (dict) – Keyword arguments to be passed in self._cls class constructor.

	Return type:

	MPIActor

	
_serialization_helper()

	Helper to save the state of the object.

This is defined to make pickling work via __reduce__.

	Returns:

	A dictionary of the information needed to reconstruct the object.

	Return type:

	dict

MPIActorMethod

The class is specific implementation of ActorMethod class using MPI.

The MPIActorMethod implements
internal method _remote()
that is responsible for calls of native MPI Actor
class methods.

API

	
class unidist.core.backends.mpi.actor.MPIActorMethod(cls, method_name)

	The class implements the interface in ActorMethod using MPI backend.

	Parameters:

	
	cls (unidist.core.backends.mpi.core.Actor) – An actor class from which method method_name will be called.

	method_name (str) – The name of the method to be called.

	
_remote(*args, num_returns=None, **kwargs)

	Execute self._method_name in a worker process.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in the method.

	num_returns (int, optional) – Number of results to be returned. If it isn’t
provided, self._num_returns will be used.

	**kwargs (dict) – Keyword arguments to be passed in the method.

	Returns:

	Type of returns depends on num_returns value:

	if num_returns == 1, ObjectRef will be returned.

	if num_returns > 1, list of ObjectRef-s will be returned.

	if num_returns == 0, None will be returned.

	Return type:

	ObjectRef, list or None

MPIBackend

The class is specific implementation of Backend interface using MPI.

API

	
class unidist.core.backends.mpi.backend.MPIBackend

	The class that implements the interface in Backend using MPI.

	
static cluster_resources()

	Get resources of MPI cluster.

	Returns:

	Dictionary with cluster nodes info in the form
{“node_ip0”: {“CPU”: x0}, “node_ip1”: {“CPU”: x1}, …}.

	Return type:

	dict

	
static get(data_ids)

	Get a remote object or a list of remote objects
from distributed memory.

	Parameters:

	data_ids (unidist.core.backends.common.data_id.DataID or list) – DataID or a list of DataID objects to get data from.

	Returns:

	A Python object or a list of Python objects.

	Return type:

	object

	
static get_ip()

	Get node IP address.

	Returns:

	Node IP address.

	Return type:

	str

	
static is_initialized()

	Check if MPI backend has already been initialized.

	Returns:

	True or False.

	Return type:

	bool

	
static make_actor(cls, num_cpus, resources)

	Define an actor class.

	clsobject
	Class to be an actor class.

	num_cpusint
	The number of CPUs to reserve for the lifetime of the actor.

	resourcesdict
	Custom resources to reserve for the lifetime of the actor.

	Returns:

	
	MPIActor – The actor class type to create.

	list – The list of arguments for MPIActor constructor.

	
static make_remote_function(function, num_cpus, num_returns, resources)

	Define a remote function.

	functioncallable
	Function to be a remote function.

	num_cpusint
	The number of CPUs to reserve for the remote function.

	num_returnsint
	The number of ObjectRef-s returned by the remote function invocation.

	resourcesdict
	Custom resources to reserve for the remote function.

	Return type:

	MPIRemoteFunction

	
static num_cpus()

	Get the number of CPUs used by the execution backend.

	Return type:

	int

	
static put(data)

	Put data into distributed memory.

	Parameters:

	data (object) – Data to be put.

	Returns:

	DataID matching to data.

	Return type:

	unidist.core.backends.common.data_id.DataID

	
static shutdown()

	Shutdown MPI execution backend.

	
static wait(data_ids, num_returns=1)

	Wait until data_ids are finished.

This method returns two lists. The first list consists of
data IDs that correspond to objects that completed computations.
The second list corresponds to the rest of the data IDs (which may or may not be ready).

	Parameters:

	
	data_ids (unidist.core.backends.common.data_id.DataID or list) – DataID or list of DataID-s to be waited.

	num_returns (int, default: 1) – The number of DataID-s that should be returned as ready.

	Returns:

	List of data IDs that are ready and list of the remaining data IDs.

	Return type:

	tuple

MPIRemoteFunction

The class is specific implementation of RemoteFunction class using MPI.

The MPIRemoteFunction implements
internal method _remote()
that transmites execution of operations to MPI.

API

	
class unidist.core.backends.mpi.remote_function.MPIRemoteFunction(function, num_cpus, num_returns, resources)

	The class that implements the interface in RemoteFunction using MPI.

	Parameters:

	
	function (callable) – A function to be called remotely.

	num_cpus (int) – The number of CPUs to reserve for the remote function.

	num_returns (int) – The number of ObjectRef-s returned by the remote function invocation.

	resources (dict) – Custom resources to reserve for the remote function.

	
_remote(*args, num_cpus=None, num_returns=None, resources=None, **kwargs)

	Execute self._remote_function in a worker process.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in the self._remote_function.

	num_cpus (int, optional) – The number of CPUs to reserve for the remote function.

	num_returns (int, optional) – The number of ObjectRef-s returned by the remote function invocation.

	resources (dict, optional) – Custom resources to reserve for the remote function.

	**kwargs (dict) – Keyword arguments to be passed in the self._remote_function.

	Returns:

	Type of returns depends on num_returns value:

	if num_returns == 1, ObjectRef will be returned.

	if num_returns > 1, list of ObjectRef-s will be returned.

	if num_returns == 0, None will be returned.

	Return type:

	ObjectRef, list or None

Async Operations

API

	
class unidist.core.backends.mpi.core.async_operations.AsyncOperations

	Class that stores MPI async communication handlers.

Class holds a reference to sending data to prolong data lifetime during send operation.

	
check()

	Check all MPI async send requests readiness and remove a reference to sending data.

	
extend(handlers_list)

	Extend internal list with handler_list.

	Parameters:

	handler_list (list) – A list of pairs with handler and data reference.

	
finish()

	Finish all MPI async send requests.

	
classmethod get_instance()

	Get instance of AsyncOperations.

	Return type:

	AsyncOperations

Common interfaces

Functions and classes used by MPI backend modules.

API

	
class unidist.core.backends.mpi.core.common.Operation

	Class that describes supported operations.

	
EXECUTE

	Execute a remote task.

	Type:

	int, default 1

	
GET

	Return local data to a requester.

	Type:

	int, default 2

	
PUT_DATA

	Save the data to a local storage.

	Type:

	int, default 3

	
PUT_OWNER

	Save the data location to a local storage.

	Type:

	int, default 4

	
PUT_SHARED_DATA

	Save the data into shared memory.

	Type:

	int, default 5

	
WAIT

	Return readiness signal of a local data to a requester.

	Type:

	int, default 6

	
ACTOR_CREATE

	Create local actor instance.

	Type:

	int, default 7

	
ACTOR_EXECUTE

	Execute method of a local actor instance.

	Type:

	int, default 8

	
CLEANUP

	Cleanup local object storage for out-of-scope IDs.

	Type:

	int, default 9

	
TASK_DONE

	Increment global task counter.

	Type:

	int, default 10

	
GET_TASK_COUNT

	Return global task counter to a requester.

	Type:

	int, default 11

	
RESERVE_SHARED_MEMORY

	Reserve area in shared memory for the data.

	Type:

	int, default 12

	
REQUEST_SHARED_DATA

	Return the area in shared memory with the requested data.

	Type:

	int, default 13

	
CANCEL

	Send a message to a worker to exit the event loop.

	Type:

	int, default 14

	
READY_TO_SHUTDOWN

	Send a message to monitor from a worker,
which is ready to shutdown.

	Type:

	int, default 15

	
SHUTDOWN

	Send a message from monitor to a worker to shutdown.

	Type:

	int, default 16

	
class unidist.core.backends.mpi.core.common.MpiDataID(owner_rank, data_number, gc=None)

	Class for tracking data IDs of MPI processes.

The class extends unidist.core.backends.common.data_id.DataID functionality,
ensuring the uniqueness of the object to correctly construct/reconstruct it.
Otherwise, we would get into wrong garbage collection.

	Parameters:

	
	owner_rank (int) – The rank of the process that owns the data.

	data_number (int) – Unique data number for the owner process.

	gc (unidist.core.backends.mpi.core.executor.GarbageCollector or None) – Local garbage collector reference.
The actual object is for the data id owner, otherwise, None.

	
unidist.core.backends.mpi.core.common.get_logger(logger_name, file_name, activate=None)

	Configure logger and get it’s instance.

	Parameters:

	
	logger_name (str) – Name of a logger.

	file_name (str) – File name.

	activate (optional, default: None) – Whether to enable logging or not.
If None, the value is superseded with MpiLog.

	Returns:

	A Python logger object.

	Return type:

	object

	
unidist.core.backends.mpi.core.common.unwrapped_data_ids_list(args)

	Transform all found data ID objects to their underlying value in an iterable object.

	Parameters:

	args (iterable) – Sequence of data.

	Returns:

	Transformed list with underlying DataID values.

	Return type:

	list

	
unidist.core.backends.mpi.core.common.materialize_data_ids(data_ids, unwrap_data_id_impl, is_pending=False)

	Traverse iterable object and materialize all data IDs.

Find all unidist.core.backends.mpi.core.common.MpiDataID instances and call unwrap_data_id_impl on them.

	Parameters:

	
	data_ids (iterable) – Iterable objects to transform recursively.

	unwrap_data_id_impl (callable) – Function to get the ID associated data from the local object store if available.

	is_pending (bool, default: False) – Status of data materialization attempt as a flag.

	Returns:

	Transformed iterable object (task arguments) and status if all DataID instances were transformed.

	Return type:

	iterable or bool

	
unidist.core.backends.mpi.core.common.check_mpich_version(target_version)

	Check if the using MPICH version is equal to or greater than the target version.

	Parameters:

	target_version (str) – Required version of the MPICH library.

	Returns:

	True ot false.

	Return type:

	bool

	
unidist.core.backends.mpi.core.common.is_shared_memory_supported(raise_warning=False)

	Check if the unidist on MPI supports shared memory.

	Parameters:

	raise_warning (bool, default: False) – Whether to raise a warning or not.
True is passed only for root process
to have the only warning.

	Returns:

	True or False.

	Return type:

	bool

Notes

Prior to the MPI 3.0 standard there is no support for shared memory.

MPI communication API

MPI communication routines for controller/worker data interchange.

API

Simple operations involve send/receive objects of standard Python data types.
mpi4py library handles serialization with pickle library by default.

	
unidist.core.backends.mpi.core.communication.mpi_send_object(comm, data, dest_rank, tag=112)

	Send a Python object to another MPI rank in a blocking way.

	Parameters:

	
	comm (object) – MPI communicator object.

	data (object) – Data to send.

	dest_rank (int) – Target MPI process to transfer data.

	tag (common.MPITag, default: common.MPITag.OBJECT) – Message tag.

Notes

	This blocking send is used when we have to wait for completion of the communication,
which is necessary for the pipeline to continue, or when the receiver is waiting for a result.
Otherwise, use non-blocking mpi_isend_object.

	The special tag is used for this communication, namely, common.MPITag.OBJECT.

	
unidist.core.backends.mpi.core.communication.mpi_isend_object(comm, data, dest_rank)

	Send a Python object to another MPI rank in a non-blocking way.

	Parameters:

	
	comm (object) – MPI communicator object.

	data (object) – Data to send.

	dest_rank (int) – Target MPI process to transfer data.

	Returns:

	A handler to MPI_Isend communication result.

	Return type:

	object

Notes

The special tag is used for this communication, namely, common.MPITag.OBJECT.

	
unidist.core.backends.mpi.core.communication.mpi_send_buffer(comm, buffer, dest_rank, data_type=<mpi4py.MPI.Datatype object>, buffer_size=None)

	Send buffer object to another MPI rank in a blocking way.

	Parameters:

	
	comm (object) – MPI communicator object.

	buffer (object) – Buffer object to send.

	dest_rank (int) – Target MPI process to transfer buffer.

	data_type (MPI.Datatype, default: MPI.CHAR) – MPI data type for sending data.

	buffer_size (int, default: None) – Buffer size in bytes. Send an additional message with a buffer size to prepare another process to receive if buffer_size is not None.

Notes

	This blocking send is used when we have to wait for completion of the communication,
which is necessary for the pipeline to continue, or when the receiver is waiting for a result.
Otherwise, use non-blocking mpi_isend_buffer.

	The special tags are used for this communication, namely,
common.MPITag.OBJECT and common.MPITag.BUFFER.

	
unidist.core.backends.mpi.core.communication.mpi_isend_buffer(comm, buffer_size, buffer, dest_rank)

	Send buffer object to another MPI rank in a non-blocking way.

	Parameters:

	
	comm (object) – MPI communicator object.

	buffer_size (int) – Buffer size in bytes.

	buffer (object) – Buffer object to send.

	dest_rank (int) – Target MPI process to transfer data.

	Returns:

	A handler to MPI_Isend communication result.

	Return type:

	object

Notes

The special tags are used for this communication, namely,
common.MPITag.OBJECT and common.MPITag.BUFFER.

	
unidist.core.backends.mpi.core.communication.mpi_recv_buffer(comm, source_rank, result_buffer=None)

	Receive data buffer.

	Parameters:

	
	comm (object) – MPI communicator object.

	source_rank (int) – Communication event source rank.

	result_buffer (object, default: None) – The array to be filled. If result_buffer is None, the buffer size will be requested and the necessary buffer created.

	Returns:

	Array buffer or serialized object.

	Return type:

	object

Notes

The special tags are used for this communication, namely,
common.MPITag.OBJECT and common.MPITag.BUFFER.

	
unidist.core.backends.mpi.core.communication.send_simple_operation(comm, operation_type, operation_data, dest_rank)

	Send an operation type and standard Python data types in a blocking way.

	Parameters:

	
	comm (object) – MPI communicator object.

	operation_type (unidist.core.backends.mpi.core.common.Operation) – Operation message type.

	operation_data (object) – Data object to send.

	dest_rank (int) – Target MPI process to transfer data.

Notes

	This blocking send is used when we have to wait for completion of the communication,
which is necessary for the pipeline to continue, or when the receiver is waiting for a result.
Otherwise, use non-blocking isend_simple_operation.

	Serialization of the data to be sent takes place just using pickle.dump in this case.

	The special tags are used for this communication, namely,
common.MPITag.OPERATION and common.MPITag.OBJECT.

	
unidist.core.backends.mpi.core.communication.isend_simple_operation(comm, operation_type, operation_data, dest_rank)

	Send an operation type and standard Python data types in a non-blocking way.

	Parameters:

	
	comm (object) – MPI communicator object.

	operation_type (unidist.core.backends.mpi.core.common.Operation) – Operation message type.

	operation_data (object) – Data object to send.

	dest_rank (int) – Target MPI process to transfer data.

	Returns:

	A list of pairs, MPI_Isend handler and associated data to send.

	Return type:

	list

Notes

	Serialization of the data to be sent takes place just using pickle.dump in this case.

	The special tags are used for this communication, namely,
common.MPITag.OPERATION and common.MPITag.OBJECT.

	
unidist.core.backends.mpi.core.communication.mpi_recv_object(comm, source_rank)

	Receive an object of a standard Python data type.

	Parameters:

	
	comm (object) – MPI communicator object.

	source_rank (int) – Source MPI process to receive data from.

	Returns:

	Received data object from another MPI process.

	Return type:

	object

Notes

	De-serialization is a simple pickle.load in this case.

	The special tag is used for this communication, namely, common.MPITag.OBJECT.

Complex operations involve send/receive objects of custom data types, functions and classes with native buffers support.
Several levels of serialization handle this case, including msgpack, cloudpickle and pickle libraries.
pickle library uses protocol 5 for out-of-band buffers serialization for performance reasons.
isend_complex_operation() is an asynchronous interface for sending data.

	
unidist.core.backends.mpi.core.communication.send_complex_data(comm, data, dest_rank, is_serialized=False)

	Send the data that consists of different user provided complex types, lambdas and buffers in a blocking way.

	Parameters:

	
	comm (object) – MPI communicator object.

	data (object) – Data object to send.

	dest_rank (int) – Target MPI process to transfer data.

	is_serialized (bool, default: False) – data is already serialized or not.

	Returns:

	Serialized data for caching purpose.

	Return type:

	dict

Notes

This blocking send is used when we have to wait for completion of the communication,
which is necessary for the pipeline to continue, or when the receiver is waiting for a result.
Otherwise, use non-blocking isend_complex_data.

	
unidist.core.backends.mpi.core.communication.isend_complex_data(comm, data, dest_rank, is_serialized=False)

	Send the data that consists of different user provided complex types, lambdas and buffers in a non-blocking way.

Non-blocking asynchronous interface.

	Parameters:

	
	comm (object) – MPI communicator object.

	data (object) – Data object to send.

	dest_rank (int) – Target MPI process to transfer data.

	is_serialized (bool, default: False) – operation_data is already serialized or not.

	Returns:

	
	list – A list of pairs, MPI_Isend handler and associated data to send.

	object – A serialized msgpack data.

	list – A list of pickle buffers.

	list – A list of buffers amount for each object.

Notes

The special tags are used for this communication, namely,
common.MPITag.OBJECT and common.MPITag.BUFFER.

	
unidist.core.backends.mpi.core.communication.recv_complex_data(comm, source_rank, info_package)

	Receive the data that may consist of different user provided complex types, lambdas and buffers.

The data is de-serialized from received buffer.

	Parameters:

	
	comm (object) – MPI communicator object.

	source_rank (int) – Source MPI process to receive data from.

	info_package (unidist.core.backends.mpi.core.common.MetadataPackage) – Required information to deserialize data.

	Returns:

	Received data object from another MPI process.

	Return type:

	object

Notes

The special tags are used for this communication, namely,
common.MPITag.OBJECT and common.MPITag.BUFFER.

	
unidist.core.backends.mpi.core.communication.isend_complex_operation(comm, operation_type, operation_data, dest_rank, is_serialized=False)

	Send operation and data that consists of different user provided complex types, lambdas and buffers.

Non-blocking asynchronous interface.
The data is serialized with unidist.core.backends.mpi.core.ComplexDataSerializer.
Function works with already serialized data.

	Parameters:

	
	comm (object) – MPI communicator object.

	operation_type (unidist.core.backends.mpi.core.common.Operation) – Operation message type.

	operation_data (object) – Data object to send.

	dest_rank (int) – Target MPI process to transfer data.

	is_serialized (bool) – operation_data is already serialized or not.
- operation_data is always serialized for data
that has already been saved into the object store.
- operation_data is always not serialized
for sending a task or an actor (actor method).

	Returns:

	Async handlers list and serialization data dict for caching purpose.

	Return type:

	list and dict

Notes

The special tags are used for this communication, namely,
common.MPITag.OPERATION, common.MPITag.OBJECT and common.MPITag.BUFFER.

Complex operations as above, but operating with a bytearray of already serialized data.

	
unidist.core.backends.mpi.core.communication.isend_serialized_operation(comm, operation_type, operation_data, dest_rank)

	Send operation and serialized simple data.

	Parameters:

	
	comm (object) – MPI communicator object.

	operation_type (unidist.core.backends.mpi.core.common.Operation) – Operation message type.

	operation_data (object) – Data object to send.

	dest_rank (int) – Target MPI process to transfer data.

	Returns:

	A list of pairs, MPI_Isend handler and associated data to send.

	Return type:

	list

Notes

The special tags are used for this communication, namely,
common.MPITag.OPERATION, common.MPITag.OBJECT and common.MPITag.BUFFER.

	
unidist.core.backends.mpi.core.communication.recv_serialized_data(comm, source_rank)

	Receive serialized data buffer.

The data is de-serialized with unidist.core.backends.mpi.core.SimpleDataSerializer.

	Parameters:

	
	comm (object) – MPI communicator object.

	source_rank (int) – Source MPI process to receive data from.

	Returns:

	Received de-serialized data object from another MPI process.

	Return type:

	object

Notes

The special tags are used for this communication, namely,
common.MPITag.OBJECT and common.MPITag.BUFFER.

To reduce possible contention, MPI communication module supports custom receive data functions with a busy-wait loop underneath.

	
unidist.core.backends.mpi.core.communication.mpi_busy_wait_recv(comm, source_rank)

	Wait for receive operation result in a custom busy wait loop.

	Parameters:

	
	comm (object) – MPI communicator object.

	source_rank (int) – Source MPI process to receive data.

	Returns:

	Received data.

	Return type:

	object

Notes

The special tag is used for this communication, namely, common.MPITag.OBJECT.

	
unidist.core.backends.mpi.core.communication.mpi_recv_operation(comm)

	Worker receive operation type interface.

Busy waits to avoid contention. Receives data from any source.

	Parameters:

	comm (object) – MPI communicator object.

	Returns:

	
	unidist.core.backends.mpi.core.common.Operation – Operation type.

	int – Source rank.

Notes

The special tag is used for this communication, namely, common.MPITag.OPERATION.

MPI High-level API

MPI controller API module provides high-level functions for initialization of the backend,
for working with object storage and submitting tasks.

API

	
unidist.core.backends.mpi.core.controller.api.init()

	Initialize MPI processes.

Notes

When initialization collect the MPI cluster topology.

	
unidist.core.backends.mpi.core.controller.api.is_initialized()

	Check if MPI backend has already been initialized.

	Returns:

	True or False.

	Return type:

	bool

Function shutdown() sends cancelation signal to all MPI processes.
After that, MPI backend couldn’t be restarted.

	
unidist.core.backends.mpi.core.controller.api.shutdown()

	Shutdown all MPI processes.

Notes

Sends cancelation operation to all workers and monitor processes.

Functions get() and
put() are responsible for read/write operations from/to object storage.
Both of the functions block execution until read/write finishes.

	
unidist.core.backends.mpi.core.controller.api.get(data_ids)

	Get an object(s) associated with data_ids from the object storage.

	Parameters:

	data_ids (unidist.core.backends.mpi.core.common.MpiDataID or list) – An ID(s) to object(s) to get data from.

	Returns:

	A Python object.

	Return type:

	object

	
unidist.core.backends.mpi.core.controller.api.put(data)

	Put the data into object storage.

	Parameters:

	data (object) – Data to be put.

	Returns:

	An ID of an object in object storage.

	Return type:

	unidist.core.backends.mpi.core.common.MpiDataID

wait() carries out blocking of execution
until a requested number of MpiDataID isn’t ready.

	
unidist.core.backends.mpi.core.controller.api.wait(data_ids, num_returns=1)

	Wait until data_ids are finished.

This method returns two lists. The first list consists of
DataID-s that correspond to objects that completed computations.
The second list corresponds to the rest of the DataID-s (which may or may not be ready).

	Parameters:

	
	data_ids (unidist.core.backends.mpi.core.common.MpiDataID or list) – DataID or list of DataID-s to be waited.

	num_returns (int, default: 1) – The number of DataID-s that should be returned as ready.

	Returns:

	List of data IDs that are ready and list of the remaining data IDs.

	Return type:

	tuple

submit() submits a task execution request to a worker.
Specific worker will be chosen by schedule_rank() scheduling function.

	
unidist.core.backends.mpi.core.controller.api.submit(task, *args, num_returns=1, **kwargs)

	Execute function on a worker process.

	Parameters:

	
	task (callable) – Function to be executed in the worker.

	*args (iterable) – Positional arguments to be passed in the task.

	num_returns (int, default: 1) – Number of results to be returned from task.

	**kwargs (dict) – Keyword arguments to be passed in the task.

	Returns:

	Type of returns depends on num_returns value:

	if num_returns == 1, DataID will be returned.

	if num_returns > 1, list of DataID-s will be returned.

	if num_returns == 0, None will be returned.

	Return type:

	unidist.core.backends.mpi.core.common.MpiDataID or list or None

Scheduler

Currently, scheduling happens in a simple round-robing fashion.
schedule_rank method
just returns the next rank number in a loop.

	
unidist.core.backends.mpi.core.controller.common.RoundRobin.schedule_rank(self)

	Find the next non-reserved rank for task/actor-task execution.

	Returns:

	A rank number.

	Return type:

	int

GarbageCollector

GarbageCollector controls memory footprint and sends cleanup requests for all workers,
if certain amount of data IDs is out-of-scope.

	
class unidist.core.backends.mpi.core.controller.garbage_collector.GarbageCollector(local_store)

	Class that tracks deleted data IDs and cleans worker’s object storage.

	Parameters:

	local_store (unidist.core.backends.mpi.core.local_object_store) – Reference to the local object storage.

Notes

Cleanup relies on internal threshold settings.

	
collect(data_id)

	Track ID destruction.

This ID is out of scope, it’s associated data should be cleared.

	Parameters:

	data_id_metadata (tuple) – Tuple of the owner rank and data number describing a MpiDataID.

	
increment_task_counter()

	Track task submission number.

Notes

For cleanup purpose.

	
regular_cleanup()

	Cleanup all garbage collected IDs from local and all workers object storages.

Cleanup triggers based on internal threshold settings.

Local Object Store

MPI LocalObjectStore stores data in-process memory in a local dict.
In depend on MpiSharedObjectStoreThreshold`,
data can be stored in SharedObjectStore.

API

	
class unidist.core.backends.mpi.core.local_object_store.LocalObjectStore

	Class that stores local objects and provides access to them.

Notes

The storage is local to the current worker process only.

	
cache_send_info(data_id, rank)

	Save communication event for this data_id and rank.

	Parameters:

	
	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – An ID to data.

	rank (int) – Rank number where the data was sent.

	
cache_serialized_data(data_id, data)

	Save serialized object for this data_id.

	Parameters:

	
	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – An ID to data.

	data (object) – Serialized data to cache.

	
clear(cleanup_list)

	Clear “strong” references to data IDs from cleanup_list.

	Parameters:

	cleanup_list (list) – List of data IDs.

Notes

The actual data will be collected later when there is no weak or
strong reference to data in the current worker.

	
contains(data_id)

	Check if the data associated with data_id exists in a local dictionary.

	Parameters:

	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – An ID to data.

	Returns:

	Return the status if an object exist in local dictionary.

	Return type:

	bool

	
contains_data_owner(data_id)

	Check if the data location info associated with data_id exists in a local dictionary.

	Parameters:

	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – An ID to data.

	Returns:

	Return the True status if an object location is known.

	Return type:

	bool

	
generate_data_id(gc)

	Generate unique MpiDataID instance.

	Parameters:

	gc (unidist.core.backends.mpi.core.executor.GarbageCollector) – Local garbage collector reference.

	Returns:

	Unique data ID instance.

	Return type:

	unidist.core.backends.mpi.core.common.MpiDataID

	
generate_output_data_id(dest_rank, gc, num_returns=1)

	Generate unique list of unidist.core.backends.mpi.core.common.MpiDataID instance.

	Parameters:

	
	dest_rank (int) – Ranks number where generated list will be located.

	gc (unidist.core.backends.mpi.core.executor.GarbageCollector) – Local garbage collector reference.

	num_returns (int, default: 1) – Generated list size.

	Returns:

	A list of unique MpiDataID instances.

	Return type:

	list

	
get(data_id)

	Get the data from a local dictionary.

	Parameters:

	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – An ID to data.

	Returns:

	Return local data associated with data_id.

	Return type:

	object

	
get_data_owner(data_id)

	Get the data owner rank.

	Parameters:

	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – An ID to data.

	Returns:

	Rank number where the data resides.

	Return type:

	int

	
classmethod get_instance()

	Get instance of LocalObjectStore.

	Return type:

	LocalObjectStore

	
get_serialized_data(data_id)

	Get serialized data on this data_id.

	Parameters:

	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – An ID to data.

	Returns:

	Cached serialized data associated with data_id.

	Return type:

	object

	
is_already_sent(data_id, rank)

	Check if communication event on this data_id and rank happened.

	Parameters:

	
	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – An ID to data

	rank (int) – Rank number to check.

	Returns:

	True if communication event already happened.

	Return type:

	bool

	
is_already_serialized(data_id)

	Check if the data on this data_id is already serialized.

	Parameters:

	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – An ID to data.

	Returns:

	True if the data is already serialized.

	Return type:

	bool

	
maybe_update_data_id_map(data_id)

	Add a strong reference to the data_id if necessary.

	Parameters:

	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – An ID to data.

Notes

The worker must have a strong reference to the external data_id until the owner process
send the unidist.core.backends.common.Operation.CLEANUP operation with this data_id.

	
put(data_id, data)

	Put data to internal dictionary.

	Parameters:

	
	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – An ID to data.

	data (object) – Data to be put.

	
put_data_owner(data_id, rank)

	Put data location (owner rank) to internal dictionary.

	Parameters:

	
	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – An ID to data.

	rank (int) – Rank number where the data resides.

Monitor related functionality API

Infinite monitor_loop() function tracks
MPI backend statistics: executed tasks counter.

API

Cancel operation from Operations class breaks the loop.

	
unidist.core.backends.mpi.core.monitor.loop.monitor_loop()

	Infinite monitor operations processing loop.

Tracks the number of executed tasks and completed (ready) data IDs.

Notes

The loop exits on special cancelation operation.
unidist.core.backends.mpi.core.common.Operations defines a set of supported operations.

Serialization API

Class ComplexDataSerializer supports data serialization of complex types
with lambdas, functions, member functions and large data arrays. In particular, the class supports out-of-band data serialization
for a set of pickle 5 protocol compatible libraries - pandas and NumPy, specifically pandas.DataFrame, pandas.Series and np.ndarray types.
This class is used in case of serialization of compound objects with different unknown types, possibly large arrays.
Class SimpleDataSerializer supports data serialization of simple data types.
Also, the class has an API for serialization of lambdas, functions, member functions (and uses cloudpickle library for that purpose),
but with no performance optimization for large raw data. This class is used when exact object type is known for serialization and it doesn’t consist of large datasets.

API

	
class unidist.core.backends.mpi.core.serialization.ComplexDataSerializer(buffers=None, buffer_count=None)

	Class for data serialization/de-serialization for MPI comminication.

	Parameters:

	
	buffers (list, default: None) – A list of PickleBuffer objects for data decoding.

	buffer_count (list, default: None) – List of the number of buffers for each object
to be serialized/deserialized using the pickle 5 protocol.

Notes

Uses a combination of msgpack, cloudpickle and pickle libraries.
Msgpack allows to serialize/deserialize internal objects of a container separately,
but send them as one object. For example, for an array of pandas DataFrames,
each DataFrame will be serialized separately using pickle 5,
and all buffers will be stored in one array to be sent together.
To deserialize it buffer_count is used, which contains information
about the number of buffers for each internal object.

	
_buffer_callback(pickle_buffer)

	Callback for pickle protocol 5 out-of-band data buffers collection.

	Parameters:

	pickle_buffer (pickle.PickleBuffer) – Pickle library buffer wrapper.

	
_cpkl_encode(obj)

	Encode with cloudpickle library.

	Parameters:

	obj (object) – Python object.

	Returns:

	Dictionary with array of serialized bytes.

	Return type:

	dict

	
_dataframe_encode(frame)

	Encode with pickle library using protocol 5.

	Parameters:

	data (object) – Pickle 5 serializable object (e.g. pandas DataFrame or NumPy array).

	Returns:

	Dictionary with array of serialized bytes.

	Return type:

	dict

	
_decode_custom(obj)

	De-serialization hook for msgpack library.

It decodes complex data types the library couldn`t handle.

	Parameters:

	obj (object) – Python object.

	
_encode_custom(obj)

	Serialization hook for msgpack library.

It encodes complex data types the library couldn`t handle.

	Parameters:

	obj (object) – Python object.

	
_pkl_encode(obj)

	Encode with pickle library.

	Parameters:

	obj (object) – Python object.

	Returns:

	Dictionary with array of serialized bytes.

	Return type:

	dict

	
deserialize(s_data)

	De-serialize data from a bytearray.

	Parameters:

	s_data (bytearray) – Data to de-serialize.

	Returns:

	Deserialized data.

	Return type:

	object

Notes

Uses msgpack, cloudpickle and pickle libraries.

	
serialize(data)

	Serialize data to a byte array.

	Parameters:

	data (object) – Data to serialize.

	Returns:

	Serialized data.

	Return type:

	bytes

Notes

Uses msgpack, cloudpickle and pickle libraries.

	
class unidist.core.backends.mpi.core.serialization.SimpleDataSerializer

	Class for simple data serialization/de-serialization for MPI communication.

Notes

Uses cloudpickle and pickle libraries as separate APIs.

	
deserialize_cloudpickle(data)

	De-serialization with cloudpickle library.

	Parameters:

	obj (bytearray) – Python object.

	Returns:

	Original reconstructed object.

	Return type:

	object

	
deserialize_pickle(data)

	De-serialization with pickle library.

	Parameters:

	obj (bytearray) – Python object.

	Returns:

	Original reconstructed object.

	Return type:

	object

	
serialize_cloudpickle(data)

	Encode with a cloudpickle library.

	Parameters:

	obj (object) – Python object.

	Returns:

	Array of serialized bytes.

	Return type:

	bytearray

	
serialize_pickle(data)

	Encode with a pickle library.

	Parameters:

	obj (object) – Python object.

	Returns:

	Array of serialized bytes.

	Return type:

	bytearray

Shared Object Store

MPI SharedObjectStore stores data in the shared object store.
In depend on MpiSharedObjectStoreThreshold,
data can be stored in LocalObjectStore.

Topology changes

If shared object store is enabled on a cluster, unidist has some changes in the number of service processes.
Monitor processes are created and assigned on each host.
All monitoring processes can be divided into root monitor and non-root monitor.
The non-root monitor is only responsible for managing shared object store on its host,
while the root monitor also performs the main work of the monitor.

Service buffer

Shared object store uses an additional service buffer to store the number of references to stored data by processes on the host
and check whether the data has been written to shared memory or not.

A service buffer is an array of long integers that stores service information for each data in the shared object store.
Service information consists of 4 numbers:

	Worker ID - the first part of the DataID.

	Data number - the second part of the DataID.

	First data index - the first shared memory index where the data is located.

	References number - the number of data references, which shows how many processes are using this data.

Shared memory size

Memory for shared object store is allocated and managed by the monitor process,
and other processes on the same host have read and write access to it.
By default, shared object store uses 95% of all available virtual memory.
You can control the size of shared memory using configuration settings:
MpiSharedObjectStoreMemory and
MpiSharedServiceMemory.

Shared memory management

All workers on the same host can write to shared memory, but the monitor process manages it and determines
where data will be written and when it will be deleted. If a process wants to write some data to shared memory,
it asks the monitor to reserve memory in shared object store of the desired size and then writes it to shared memory.

When the monitor receives a request to delete data from shared memory, it checks the number of references from all processes
to this data. If the number of references is 0, the data will be deleted and the shared memory will be freed for further use.

All shared storage management (memory reservation and deallocation) is defined in
unidist.core.backends.mpi.core.monitor.shared_memory_manager.SharedMemoryManager.

API

	
class unidist.core.backends.mpi.core.shared_object_store.SharedObjectStore

	Class that provides access to data in shared memory.

Notes

This class initializes and manages shared memory.

	
contains(data_id)

	Check if the store contains the data_id information required to deserialize the data.

	Returns:

	Return the True status if shared store contains required information.

	Return type:

	bool

Notes

This check does not ensure that the data is physically located in shared memory.

	
delete_service_info(data_id, service_index)

	Delete service information for the current data Id.

	Parameters:

	
	data_id (unidist.core.backends.mpi.core.common.MpiDataID) –

	service_index (int) – The service buffer index.

Notes

This function should be called by the monitor during the cleanup of shared data.

	
finalize()

	Release used resources.

Notes

Shared store should be finalized before MPI.Finalize().

	
get(data_id, owner_rank=None, shared_info=None)

	Get data from another worker using shared memory.

	Parameters:

	
	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – An ID to data.

	owner_rank (int, default: None) – The rank that sent the data.
This value is used to synchronize data in shared memory between different hosts
if the value is not None.

	shared_info (dict, default: None) – The necessary information to properly deserialize data from shared memory.
If shared_info is None, the data already exists in shared memory in the current process.

	
classmethod get_instance()

	Get instance of SharedObjectStore.

	Return type:

	SharedObjectStore

	
get_ref_number(data_id, service_index)

	Get current references count of data_id by service index.

	Parameters:

	
	data_id (unidist.core.backends.mpi.core.common.MpiDataID) –

	service_index (int) – The service buffer index.

	Returns:

	The number of references to this data_id

	Return type:

	int

	
get_shared_buffer(first_index, last_index)

	Get the requested range of shared memory

	Parameters:

	
	first_index (int) – Start of the requested range.

	last_index (int) – End of the requested range. (excluding)

Notes

This function is used to synchronize shared memory between different hosts.

	
get_shared_info(data_id)

	Get required information to correct deserialize data_id from shared memory.

	Parameters:

	data_id (unidist.core.backends.mpi.core.common.MpiDataID) –

	Returns:

	Information required for data deserialization

	Return type:

	dict

	
is_allocated()

	Check if the shared memory is allocated and ready to put data.x

	Returns:

	True ot False.

	Return type:

	bool

	
put(data_id, serialized_data)

	Put data into shared memory.

	Parameters:

	
	data_id (unidist.core.backends.mpi.core.common.MpiDataID) –

	serialized_data (dict) – Serialized data to put into the storage.

	
should_be_shared(data)

	Check if data should be sent using shared memory.

	Parameters:

	data (dict) – Serialized data to check its size.

	Returns:

	Return the True status if data should be sent using shared memory.

	Return type:

	bool

Workers related functionality API

Worker

Each MPI worker process starts infinite worker_loop(),
which accepts and processes incoming operations.

API

Cancel operation from Operations class breaks the loop
and leaves all internal storages in their current state.

	
async unidist.core.backends.mpi.core.worker.loop.worker_loop()

	Infinite operations processing loop.

Master or any worker could be the source of an operation.

Notes

The loop exits on special cancelation operation.
unidist.core.backends.mpi.core.common.Operations defines a set of supported operations.

	
unidist.core.backends.mpi.core.worker.request_store.RequestStore.process_get_request(self, source_rank, data_id, is_blocking_op=False)

	Satisfy GET operation request from another process.

Save request for later processing if data_id is not available currently.

	Parameters:

	
	source_rank (int) – Rank number to send data to.

	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – data_id associated data to request

	is_blocking_op (bool, default: False) – Whether the get request should be blocking or not.
If True, the request should be processed immediatly
even for a worker since it can get into controller mode.

Notes

Request is asynchronous, no wait for the data sending.

	
unidist.core.backends.mpi.core.worker.request_store.RequestStore.process_wait_request(self, data_id)

	Satisfy WAIT operation request from another process.

Save request for later processing if data_id is not available currently.

	Parameters:

	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – Chech if data_id is available in object store.

Notes

Only ROOT rank is supported for now, therefore no rank argument needed.

	
unidist.core.backends.mpi.core.worker.task_store.TaskStore.process_task_request(self, request)

	Parse request data and execute the task if possible.

Data dependencies should be resolved for task execution.

	Parameters:

	request (dict) – Task related data (args, function, output).

	Returns:

	Same request if the task couldn`t be executed, otherwise None.

	Return type:

	dict or None

	
unidist.core.backends.mpi.core.worker.task_store.TaskStore.request_worker_data(self, dest_rank, data_id)

	Send GET operation with data request to destination worker.

	Parameters:

	
	dest_rank (int) – Rank number to request data from.

	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – data_id associated data to request.

Notes

Request is asynchronous, no wait for the data.

Request Storage

RequestStore stores unidist.get and unidist.wait requests for the current worker,
which couldn’t be satisied right now due to data dependencies. TaskStore stores task execution
requests that couldn’t be satisied right now due to data dependencies.

API

	
class unidist.core.backends.mpi.core.worker.request_store.RequestStore

	Class that stores data requests that couldn’t be satisfied now.

	
GET

	Get request from other worker to be executed.

	Type:

	int, default 0

	
WAIT

	Wait request from other worker to be executed.

	Type:

	int, default 1

	
DATA

	Data request to other worker.

	Type:

	int, default 2

Notes

Supports GET and WAIT requests.

	
check_pending_get_requests(data_ids)

	Check if GET event on this data_ids is waiting to be processed.

Process the request if data ID available in local object store.

	Parameters:

	data_id (iterable or unidist.core.backends.mpi.core.common.MpiDataID) – An ID or list of IDs to data.

	
check_pending_wait_requests(data_ids)

	Check if WAIT event on this data_ids is waiting to be processed.

Process the request if data ID available in local object store.
Send signal without any data.

	Parameters:

	data_id (iterable or unidist.core.backends.mpi.core.common.MpiDataID) – An ID or list of IDs to data.

	
clear_get_requests()

	Clear blocking and non-blocking get requests.

	
clear_wait_requests()

	Clear blocking wait requests requests.

	
discard_data_request(data_id)

	Discard data request by data_id because the data has become available.

	Parameters:

	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – An ID to data.

	
classmethod get_instance()

	Get instance of RequestStore.

	Return type:

	RequestStore

	
is_data_already_requested(data_id)

	Check if data by particular data_id was already requested from another MPI process.

	Parameters:

	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – An ID to data.

	Returns:

	True if communnication request was happened for this ID.

	Return type:

	bool

	
process_get_request(source_rank, data_id, is_blocking_op=False)

	Satisfy GET operation request from another process.

Save request for later processing if data_id is not available currently.

	Parameters:

	
	source_rank (int) – Rank number to send data to.

	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – data_id associated data to request

	is_blocking_op (bool, default: False) – Whether the get request should be blocking or not.
If True, the request should be processed immediatly
even for a worker since it can get into controller mode.

Notes

Request is asynchronous, no wait for the data sending.

	
process_wait_request(data_id)

	Satisfy WAIT operation request from another process.

Save request for later processing if data_id is not available currently.

	Parameters:

	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – Chech if data_id is available in object store.

Notes

Only ROOT rank is supported for now, therefore no rank argument needed.

	
put(data_id, rank, request_type, is_blocking_op=False)

	Save request type for this data ID for later processing.

	Parameters:

	
	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – An ID to data.

	rank (int) – Source rank requester.

	request_type (int) – Type of request.

	is_blocking_op (bool) – Whether the get request should be blocking or not.
If True, the request should be processed immediatly
even for a worker since it can get into controller mode.

	
class unidist.core.backends.mpi.core.worker.task_store.TaskStore

	Class that stores tasks/actor-tasks that couldn’t be executed due to data dependencies.

	
check_pending_actor_tasks()

	Check a list of pending actor task execution requests and process all ready tasks.

Task is ready if all data dependencies are resolved.

	
check_pending_tasks()

	Check a list of pending task execution requests and process all ready tasks.

Task is ready if all data dependencies are resolved.

	
clear_pending_actor_tasks()

	Clear a list of pending actor task execution requests.

	
clear_pending_tasks()

	Clear a list of pending task execution requests.

	
execute_received_task(output_data_ids, task, args, kwargs)

	Execute a task/actor-task and handle results.

	Parameters:

	
	output_data_ids (list of unidist.core.backends.mpi.core.common.MpiDataID) – A list of output data IDs to store the results in local object store.

	task (callable) – Function to be executed.

	args (iterable) – Positional arguments to be passed in the task.

	kwargs (dict) – Keyword arguments to be passed in the task.

Notes

Exceptions are stored in output data IDs as value.

	
classmethod get_instance()

	Get instance of TaskStore.

	Return type:

	TaskStore

	
process_task_request(request)

	Parse request data and execute the task if possible.

Data dependencies should be resolved for task execution.

	Parameters:

	request (dict) – Task related data (args, function, output).

	Returns:

	Same request if the task couldn`t be executed, otherwise None.

	Return type:

	dict or None

	
put(request)

	Save task execution request for later processing.

Some data dependencies are not resolved yet.

	Parameters:

	request (dict) – Task execution request with arguments.

	
put_actor(request)

	Save actor task execution request for later processing.

Some data dependencies are not resolved yet.

	Parameters:

	request (dict) – Actor task execution request with arguments.

	
request_worker_data(dest_rank, data_id)

	Send GET operation with data request to destination worker.

	Parameters:

	
	dest_rank (int) – Rank number to request data from.

	data_id (unidist.core.backends.mpi.core.common.MpiDataID) – data_id associated data to request.

Notes

Request is asynchronous, no wait for the data.

	
unwrap_local_data_id(arg)

	Inspect argument and get the ID associated data from the local object store if available.

If the object store is missing this data ID, request the data from another worker.

	Parameters:

	arg (object or unidist.core.backends.mpi.core.common.MpiDataID) – Data ID or object to inspect.

	Returns:

	Same value or data ID associated data and special flag.

	Return type:

	tuple

Notes

The function returns the success status of data materialization attempt as a flag.
If the data ID could not be resolved, the function returns True.

PyMpActor

The class is specific implementation of Actor class using Python Multiprocessing backend.

The PyMpActor implements 2 internal methods:

	__getattr__() – transmits an access responsibility
to the methods of native Python Multiprocessing Actor,
held by this class, to PyMpActorMethod class.

	_remote() – creates native
Python Multiprocessing Actor object to be held by this class.

API

	
class unidist.core.backends.pymp.actor.PyMpActor(cls, num_cpus, resources)

	The class implements the interface in Actor using Python Multiprocessing backend.

	Parameters:

	
	cls (object) – Class to be an actor class.

	num_cpus (int) – The number of CPUs to reserve for the lifetime of the actor.

	resources (dict) – Custom resources to reserve for the lifetime of the actor.

	
_remote(*args, num_cpus=None, resources=None, **kwargs)

	Create actor class, specific for Python Multiprocessing backend, from self._cls.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in self._cls class constructor.

	num_cpus (int, optional) – The number of CPUs to reserve for the lifetime of the actor.

	resources (dict, optional) – Custom resources to reserve for the lifetime of the actor.

	**kwargs (dict) – Keyword arguments to be passed in self._cls class constructor.

	Return type:

	PyMpActor

PyMpActorMethod

The class is specific implementation of ActorMethod class using Python Multiprocessing backend.

The PyMpActorMethod implements
internal method _remote()
that is responsible for calls of native Python Multiprocessing Actor
class methods.

API

	
class unidist.core.backends.pymp.actor.PyMpActorMethod(cls, method_name)

	The class implements the interface in ActorMethod using Python Multiprocessing backend.

	Parameters:

	
	cls (unidist.core.backends.pymp.core.Actor) – An actor class from which method method_name will be called.

	method_name (str) – The name of the method to be called.

	
_remote(*args, num_returns=None, **kwargs)

	Execute self._method_name in a worker process.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in the method.

	num_returns (int, optional) – Number of results to be returned. If it isn’t
provided, self._num_returns will be used.

	**kwargs (dict) – Keyword arguments to be passed in the method.

	Returns:

	Type of returns depends on num_returns value:

	if num_returns == 1, ObjectRef will be returned.

	if num_returns > 1, list of ObjectRef-s will be returned.

	if num_returns == 0, None will be returned.

	Return type:

	ObjectRef, list or None

PyMpBackend

The class is specific implementation of Backend interface using Python Multiprocessing backend.

API

	
class unidist.core.backends.pymp.backend.PyMpBackend

	The class that implements the interface in Backend using Python Multiprocessing backend.

	
static cluster_resources()

	Get resources of Multiprocessing cluster.

	Returns:

	Dictionary with node info in the form {“node_ip”: {“CPU”: x}}.

	Return type:

	dict

	
static get(data_ids)

	Get a remote object or a list of remote objects
from distributed memory.

	Parameters:

	data_ids (unidist.core.backends.common.data_id.DataID or list) – DataID or a list of DataID objects to get data from.

	Returns:

	A Python object or a list of Python objects.

	Return type:

	object

	
static get_ip()

	Get node IP address.

	Returns:

	Node IP address.

	Return type:

	str

	
static is_initialized()

	Check if Python Multiprocessing backend has already been initialized.

	Returns:

	True or False.

	Return type:

	bool

	
static make_actor(cls, num_cpus, resources)

	Define an actor class.

	clsobject
	Class to be an actor class.

	num_cpusint
	The number of CPUs to reserve for the lifetime of the actor.

	resourcesdict
	Custom resources to reserve for the lifetime of the actor.

	Returns:

	
	PyMpActor – The actor class type to create.

	list – The list of arguments for PyMpActor constructor.

	
static make_remote_function(function, num_cpus, num_returns, resources)

	Define a remote function.

	functioncallable
	Function to be a remote function.

	num_cpusint
	The number of CPUs to reserve for the remote function.

	num_returnsint
	The number of ObjectRef-s returned by the remote function invocation.

	resourcesdict
	Custom resources to reserve for the remote function.

	Return type:

	PyMpRemoteFunction

	
static num_cpus()

	Get the number of CPUs used by the execution backend.

	Return type:

	int

	
static put(data)

	Put data into distributed memory.

	Parameters:

	data (object) – Data to be put.

	Returns:

	DataID matching to data.

	Return type:

	unidist.core.backends.common.data_id.DataID

	
static shutdown()

	Shutdown Python Multiprocessing execution backend.

Note

Not supported yet.

	
static wait(data_ids, num_returns=1)

	Wait until data_ids are finished.

This method returns two lists. The first list consists of
data IDs that correspond to objects that completed computations.
The second list corresponds to the rest of the data IDs (which may or may not be ready).

	Parameters:

	
	data_ids (unidist.core.backends.common.data_id.DataID or list) – DataID or list of DataID-s to be waited.

	num_returns (int, default: 1) – The number of DataID-s that should be returned as ready.

	Returns:

	List of data IDs that are ready and list of the remaining data IDs.

	Return type:

	tuple

PyMpRemoteFunction

The class is specific implementation of RemoteFunction class using Python Multiprocessing backend.

The PyMpRemoteFunction implements
internal method _remote()
that transmites execution of operations to Python Multiprocessing.

API

	
class unidist.core.backends.pymp.remote_function.PyMpRemoteFunction(function, num_cpus, num_returns, resources)

	The class that implements the interface in RemoteFunction using Python Multiprocessing backend.

	Parameters:

	
	function (callable) – A function to be called remotely.

	num_cpus (int) – The number of CPUs to reserve for the remote function.

	num_returns (int) – The number of ObjectRef-s returned by the remote function invocation.

	resources (dict) – Custom resources to reserve for the remote function.

	
_remote(*args, num_cpus=None, num_returns=None, resources=None, **kwargs)

	Execute self._remote_function in a worker process.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in the self._remote_function.

	num_cpus (int, optional) – The number of CPUs to reserve for the remote function.

	num_returns (int, optional) – The number of ObjectRef-s returned by the remote function invocation.

	resources (dict, optional) – Custom resources to reserve for the remote function.

	**kwargs (dict) – Keyword arguments to be passed in the self._remote_function.

	Returns:

	Type of returns depends on num_returns value:

	if num_returns == 1, ObjectRef will be returned.

	if num_returns > 1, list of ObjectRef-s will be returned.

	if num_returns == 0, None will be returned.

	Return type:

	ObjectRef, list or None

Actor

Python Multiprocessing Actor class is
intended to transform a user-defined class to the class shared between processes (using multiprocessing.managers.BaseManager [https://docs.python.org/3/library/multiprocessing.html#multiprocessing.managers.BaseManager]),
which methods will be executed in a separate Python Multiprocessing Worker.

API

	
class unidist.core.backends.pymp.core.actor.Actor(cls, *args, **kwargs)

	Actor-class to execute methods of wrapped class in a separate worker.

	Parameters:

	
	cls (object) – Class to be an actor class.

	*args (iterable) – Positional arguments to be passed in cls constructor.

	**kwargs (dict) – Keyword arguments to be passed in cls constructor.

Notes

Python multiprocessing manager-class will be created to wrap cls.
This makes cls class object shared between different workers. Manager-class
starts additional process to share class state between processes.

Methods of cls class object are executed in the worker, grabbed from a workers pool.

	
submit(task)

	Execute task asynchronously in the worker grabbed by this actor.

	Parameters:

	task (unidist.core.backends.pymp.core.process_manager.Task) – Task object holding callable function.

ActorMethod

The ActorMethod class is a wrapper over the method of
the shared between processes class, stored in Python Multiprocessing Actor.
Method submit() wraps a method of the shared between processes
class object to Task and adds it
to task queue of Python Multiprocessing Worker, used by
Python Multiprocessing Actor.

API

	
class unidist.core.backends.pymp.core.actor.ActorMethod(cls_obj, actor, method_name, obj_store)

	Class is responsible to execute method_name of
cls_obj in the separate worker-process of actor object.

	Parameters:

	
	cls_obj (multiprocessing.managers.BaseManager) – Shared manager-class.

	actor (Actor) – Actor object.

	method_name (str) – The name of the method to be called.

	obj_store (unidist.core.backends.pymp.core.object_store.ObjectStore) – Object storage to share data between workers.

	
submit(*args, num_returns=1, **kwargs)

	Execute self._method_name asynchronously in the worker of self._actor.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in the self._method_name method.

	num_returns (int, default: 1) – Number of results to be returned from self._method_name.

	**kwargs (dict) – Keyword arguments to be passed in the self._method_name method.

	Returns:

	Type of returns depends on num_returns value:

	if num_returns == 1, DataID will be returned.

	if num_returns > 1, list of DataID-s will be returned.

	if num_returns == 0, None will be returned.

	Return type:

	unidist.core.backends.common.data_id.DataID, list or None

Python Multiprocessing High-level API

Python Multiprocessing API module provides high-level functions for initialization of the backend,
for working with object storage and submitting tasks.

API

Function is_initialized() allows to check
if the execution backend has been initialized.

	
unidist.core.backends.pymp.core.api.is_initialized()

	Check if Python Multiprocessing backend has already been initialized.

	Returns:

	True or False.

	Return type:

	bool

Function init() creates instances of singleton
classes ObjectStore and
ProcessManager.

	
unidist.core.backends.pymp.core.api.init(num_workers=2)

	Initialize shared object storage and workers pool.

	Parameters:

	num_workers (int, default: number of CPUs) – Number of worker-processes to start.

Notes

Run initialization of singleton objects unidist.core.backends.pymp.core.object_store.ObjectStore
and unidist.core.backends.pymp.core.process_manager.ProcessManager.

Functions get() and
put() are responsible for
read/write, respectively, objects from/to ObjectStore.
Both of the functions block execution until read/write finishes.

	
unidist.core.backends.pymp.core.api.get(data_ids)

	Get a object(s) associated with data_ids from the shared object storage.

	Parameters:

	data_ids (unidist.core.backends.common.data_id.DataID or list) – An ID(s) to object(s) to get data from.

	Returns:

	A Python object.

	Return type:

	object

	
unidist.core.backends.pymp.core.api.put(data)

	Put data into shared object storage.

	Parameters:

	data (object) – Data to be put.

	Returns:

	An ID of object in shared object storage.

	Return type:

	unidist.core.backends.common.data_id.DataID

wait() carries out blocking of execution
until a requested number of DataID isn’t ready.

	
unidist.core.backends.pymp.core.api.wait(data_ids, num_returns=1)

	Wait until data_ids are finished.

This method returns two lists. The first list consists of
DataID-s that correspond to objects that completed computations.
The second list corresponds to the rest of the DataID-s (which may or may not be ready).

	Parameters:

	
	data_ids (unidist.core.backends.common.data_id.DataID or list) – DataID or list of DataID-s to be waited.

	num_returns (int, default: 1) – The number of DataID-s that should be returned as ready.

	Returns:

	List of data IDs that are ready and list of the remaining data IDs.

	Return type:

	tuple

submit() wraps an operation to Task and adds it
to task queue of one of the workers. Specific worker will be chosen by ProcessManager.

	
unidist.core.backends.pymp.core.api.submit(func, *args, num_returns=1, **kwargs)

	Execute function in a worker process.

	Parameters:

	
	func (callable) – Function to be executed in the worker.

	*args (iterable) – Positional arguments to be passed in the func.

	num_returns (int, default: 1) – Number of results to be returned from func.

	**kwargs (dict) – Keyword arguments to be passed in the func.

	Returns:

	Type of returns depends on num_returns value:

	if num_returns == 1, DataID will be returned.

	if num_returns > 1, list of DataID-s will be returned.

	if num_returns == 0, None will be returned.

	Return type:

	unidist.core.backends.common.data_id.DataID, list or None

Shared Object Storage

Python Multiprocessing ObjectStore stores
shared between processes data in a dict implemented using Python multiprocessing.Manager [https://docs.python.org/3/library/multiprocessing.html#multiprocessing.sharedctypes.pymp.Manager].

	
class unidist.core.backends.pymp.core.object_store.ObjectStore

	Class that stores objects and provides access to these from different processes.

Notes

Shared storage is organized using multiprocessing.Manager.dict. This is separate
process which starts work in the class constructor.

	
get(data_ids)

	Get a object(s) associated with data_ids from the shared internal dictionary.

	Parameters:

	data_ids (unidist.core.backends.common.data_id.DataID or list) – An ID(s) of object(s) to get data from.

	Returns:

	A Python object.

	Return type:

	object

	
classmethod get_instance()

	Get instance of ObjectStore.

	Return type:

	unidist.core.backends.pymp.core.object_store.ObjectStore

	
put(data, data_id=None)

	Put data to internal shared dictionary.

	Parameters:

	
	data (object) – Data to be put.

	data_id (unidist.core.backends.common.data_id.DataID, optional) – An ID to data. If it isn’t provided, will be created automatically.

	Returns:

	An ID of object in internal shared dictionary.

	Return type:

	unidist.core.backends.common.data_id.DataID

	
wait(data_ids, num_returns=1)

	Wait until data_ids are finished.

This method returns two lists. The first list consists of
DataID-s that correspond to objects that completed computations.
The second list corresponds to the rest of the DataID-s (which may or may not be ready).

	Parameters:

	
	data_ids (unidist.core.backends.common.data_id.DataID or list) – DataID or list of DataID-s to be waited.

	num_returns (int, default: 1) – The number of DataID-s that should be returned as ready.

	Returns:

	List of data IDs that are ready and list of the remaining data IDs.

	Return type:

	tuple

Workers related functionality API

Worker

Python Multiprocessing Worker
represents a Python process that has a task queue. Tasks from the queue are run sequentially.

API

	
class unidist.core.backends.pymp.core.process_manager.Worker(task_queue, obj_store)

	Class-process that executes tasks from self.task_queue.

	Parameters:

	
	task_queue (multiprocessing.JoinableQueue) – A queue of task to execute.

	obj_store (unidist.core.backends.pymp.core.object_store.ObjectStore) – Shared object storage to read/write data.

	
add_task(task)

	Add task to self.task_queue.

	Parameters:

	task (unidist.core.backends.pymp.core.process_manager.Task) – Task to be added in the queue.

	
run()

	Run main infinite loop of process to execute tasks from self.task_queue.

Task

Python Multiprocessing Task
is an object-wrapper for a free functions and actor methods.

API

	
class unidist.core.backends.pymp.core.process_manager.Task(func, data_ids, obj_store, *args, **kwargs)

	Class poses as unified callable object to execute in Multiprocessing Worker.

	Parameters:

	
	func (callable) – A function to be called in object invocation.

	data_ids (unidist.core.backends.common.data_id.DataID or list) – DataID-(s) associated with result(s) of func invocation.

	obj_store (unidist.core.backends.pymp.core.object_store.ObjectStore) – Object storage to share data between workers.

	*args (iterable) – Positional arguments to be passed in the func.

	**kwargs (dict) – Keyword arguments to be passed in the func.

ProcessManager

Python Multiprocessing ProcessManager
schedules operations (Task objects)
to free Worker-s by round-robin algorithm.
Free Worker is a worker, that isn’t used
by Python Multiprocessing Actor.

API

	
class unidist.core.backends.pymp.core.process_manager.ProcessManager(num_workers=None)

	Class that controls worker pool and assings task to workers.

	Parameters:

	num_workers (int, optional) – Number of worker-processes to start. If isn’t provided,
will be equal to number of CPUs.

Notes

Constructor starts num_workers Multiprocessing Workers.

	
free_worker(idx)

	Free worker by index idx.

	Parameters:

	idx (int) – Index of worker to be freed.

	
classmethod get_instance(num_workers=None)

	Get instance of ProcessManager.

	Return type:

	unidist.core.backends.pymp.core.process_manager.ProcessManager

	
grab_worker()

	Grab a worker from worker pool.

Grabbed worker is marked as blocked and doesn’t participate
in the tasks submission.

	Returns:

	
	unidist.core.backends.pymp.core.process_manager.Worker – Grabbed worker.

	int – Index of grabbed worker.

	
submit(task)

	Add task to task queue of one of workers using round-robin.

	Parameters:

	task (unidist.core.backends.pymp.core.process_manager.Task) – Task to be added in task queue.

PySeqActor

The class is specific implementation of Actor class using
native Python Sequential functionality.

The PySeqActor implements 2 internal methods:

	__getattr__() – transmits an access responsibility
to the methods of class object, held by this class,
to PySeqActorMethod class.

	_remote() – creates an object of
the required class to be held by this class.

API

	
class unidist.core.backends.pyseq.actor.PySeqActor(cls, num_cpus, resources)

	The class implements the interface in Actor using Python Sequential backend.

	Parameters:

	
	cls (object) – Class to be an actor class.

	num_cpus (int) – The number of CPUs to reserve for the lifetime of the actor.

	resources (dict) – Custom resources to reserve for the lifetime of the actor.

	
_remote(*args, num_cpus=None, resources=None, **kwargs)

	Create actor class, specific for Python Sequential backend, from self._cls.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in self._cls class constructor.

	num_cpus (int, optional) – The number of CPUs to reserve for the lifetime of the actor.

	resources (dict, optional) – Custom resources to reserve for the lifetime of the actor.

	**kwargs (dict) – Keyword arguments to be passed in self._cls class constructor.

	Return type:

	PySeqActor

PySeqActorMethod

The class is specific implementation of ActorMethod class using
native Python Sequential functionality.

The PySeqActorMethod implements
internal method _remote()
that is responsible for method calls of the wrapped class object using submit().

API

	
class unidist.core.backends.pyseq.actor.PySeqActorMethod(cls, method_name)

	The class implements the interface in ActorMethod using Python Sequential backend.

	Parameters:

	
	cls (object) – An actor class from which method method_name will be called.

	method_name (str) – The name of the method to be called.

	
_remote(*args, num_returns=None, **kwargs)

	Execute self._method_name.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in the method.

	num_returns (int, optional) – Number of results to be returned. If it isn’t
provided, self._num_returns will be used.

	**kwargs (dict) – Keyword arguments to be passed in the method.

	Returns:

	Type of returns depends on num_returns value:

	if num_returns == 1, ObjectRef will be returned.

	if num_returns > 1, list of ObjectRef-s will be returned.

	if num_returns == 0, None will be returned.

	Return type:

	ObjectRef, list or None

PySeqBackend

The class is specific implementation of Backend interface using
native Python Sequential functionality. The Python Sequential backend provides sequential execution in main process, that
can be used for debug purposes.

API

	
class unidist.core.backends.pyseq.backend.PySeqBackend

	The class that implements the interface in Backend using Python Sequential backend.

	
static cluster_resources()

	Get resources of the cluster.

	Returns:

	Dictionary with node info in the form {“node_ip”: {“CPU”: x}}.

	Return type:

	dict

	
static get(data_ids)

	Get an object or a list of objects from object store.

	Parameters:

	data_ids (unidist.core.backends.common.data_id.DataID or list) – DataID or a list of DataID objects to get data from.

	Returns:

	A Python object or a list of Python objects.

	Return type:

	object

	
static get_ip()

	Get node IP address.

	Returns:

	Node IP address.

	Return type:

	str

	
static is_initialized()

	Check if Python Sequential backend has already been initialized.

	Returns:

	True or False.

	Return type:

	bool

	
static make_actor(cls, num_cpus, resources)

	Define an actor class.

	clsobject
	Class to be an actor class.

	num_cpusint
	The number of CPUs to reserve for the lifetime of the actor.

	resourcesdict
	Custom resources to reserve for the lifetime of the actor.

	Returns:

	
	PySeqActor – The actor class type to create.

	list – The list of arguments for PySeqActor constructor.

	
static make_remote_function(function, num_cpus, num_returns, resources)

	Define PySeqRemoteFunction.

	functioncallable
	Function to be PySeqRemoteFunction.

	num_cpusint
	The number of CPUs to reserve for PySeqRemoteFunction.

	num_returnsint
	The number of ObjectRef-s returned by the function invocation.

	resourcesdict
	Custom resources to reserve for the function.

	Return type:

	PySeqRemoteFunction

	
static num_cpus()

	Get the number of CPUs used by the execution backend.

	Return type:

	int

	
static put(data)

	Put data into object store.

	Parameters:

	data (object) – Data to be put.

	Returns:

	DataID matching to data.

	Return type:

	unidist.core.backends.common.data_id.DataID

	
static wait(data_ids, num_returns=1)

	Wait until data_ids are finished.

This method returns two lists. The first list consists of
data IDs that correspond to objects that completed computations.
The second list corresponds to the rest of the data IDs.

	Parameters:

	
	object_refs (unidist.core.backends.common.data_id.DataID or list) – DataID or list of DataID-s to be waited.

	num_returns (int, default: 1) – The number of DataID-s that should be returned as ready.

	Returns:

	List of data IDs that are ready and list of the remaining data IDs.

	Return type:

	tuple

Notes

Method serves to maintain behavior compatibility between backends. All objects
completed computation before putting into an object storage for Python Sequential backend.

PySeqRemoteFunction

The class is specific implementation of RemoteFunction class using
native Python Sequential functionality.

The PySeqRemoteFunction implements
internal method _remote()
that transmites execution of operations to core part of Python Sequential backend.

API

	
class unidist.core.backends.pyseq.remote_function.PySeqRemoteFunction(function, num_cpus, num_returns, resources)

	The class that implements the interface in RemoteFunction using Python Sequential backend.

	Parameters:

	
	function (callable) – A function to be called.

	num_cpus (int) – The number of CPUs to reserve for the function.

	num_returns (int) – The number of ObjectRef-s returned by the function invocation.

	resources (dict) – Custom resources to reserve for the function.

	
_remote(*args, num_cpus=None, num_returns=None, resources=None, **kwargs)

	Execute self._remote_function.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in the self._remote_function.

	num_cpus (int, optional) – The number of CPUs to reserve for the function.

	num_returns (int, optional) – The number of ObjectRef-s returned by the function invocation.

	resources (dict, optional) – Custom resources to reserve for the function.

	**kwargs (dict) – Keyword arguments to be passed in the self._remote_function.

	Returns:

	Type of returns depends on num_returns value:

	if num_returns == 1, ObjectRef will be returned.

	if num_returns > 1, list of ObjectRef will be returned.

	if num_returns == 0, None will be returned.

	Return type:

	ObjectRef, list or None

Python Sequential High-level API

Python Sequential API module provides high-level functions for initialization of the backend,
for working with object storage and submitting tasks.

API

Function is_initialized() allows to check
if the execution backend has been initialized.

	
unidist.core.backends.pyseq.core.api.is_initialized()

	Check if Python Sequential backend has already been initialized.

	Returns:

	True or False.

	Return type:

	bool

Function init() creates an instance of singleton
class ObjectStore.

	
unidist.core.backends.pyseq.core.api.init()

	Initialize an object storage.

Notes

Run initialization of singleton object unidist.core.backends.pyseq.core.object_store.ObjectStore.

Functions get() and
put() are responsible for
read/write, respectively, objects from/to ObjectStore.

	
unidist.core.backends.pyseq.core.api.get(data_ids)

	Get object(s) associated with data_ids from the object storage.

	Parameters:

	data_ids (unidist.core.backends.common.data_id.DataID or list) – ID(s) to object(s) to get data from.

	Returns:

	A Python object.

	Return type:

	object

	
unidist.core.backends.pyseq.core.api.put(data)

	Put data into object storage.

	Parameters:

	data (object) – Data to be put.

	Returns:

	An ID of object in object storage.

	Return type:

	unidist.core.backends.common.data_id.DataID

submit() executes a task, which result will be put into
ObjectStore.

	
unidist.core.backends.pyseq.core.api.submit(func, *args, num_returns=1, **kwargs)

	Execute function.

	Parameters:

	
	func (callable) – Function to be executed.

	*args (iterable) – Positional arguments to be passed in the func.

	num_returns (int, default: 1) – Number of results to be returned from func.

	**kwargs (dict) – Keyword arguments to be passed in the func.

	Returns:

	Type of returns depends on num_returns value:

	if num_returns == 1, DataID will be returned.

	if num_returns > 1, list of DataID-s will be returned.

	if num_returns == 0, None will be returned.

	Return type:

	unidist.core.backends.common.data_id.DataID, list or None

Object Storage

Python Sequential ObjectStore stores
data in the standard python dict [https://docs.python.org/3/tutorial/datastructures.html#dictionaries].

	
class unidist.core.backends.pyseq.core.object_store.ObjectStore

	Class that stores objects and provides access to these.

	
get(data_ids)

	Get object(s) associated with data_ids from the internal dictionary.

	Parameters:

	data_ids (unidist.core.backends.common.data_id.DataID or list) – ID(s) of object(s) to get data from.

	Returns:

	A Python object.

	Return type:

	object

	
classmethod get_instance()

	Get instance of ObjectStore.

	Return type:

	unidist.core.backends.pyseq.core.object_store.ObjectStore

	
put(data, data_id=None)

	Put data to internal dictionary.

	Parameters:

	
	data (object) – Data to be put.

	data_id (unidist.core.backends.common.data_id.DataID, optional) – An ID of data. If it isn’t provided, will be created automatically.

	Returns:

	An ID of object in internal dictionary.

	Return type:

	unidist.core.backends.common.data_id.DataID

RayActor

The class is specific implementation of Actor class using Ray.

The RayActor implements 2 internal methods:

	__getattr__() – transmits an access responsibility
to the methods of native Ray actor [https://docs.ray.io/en/master/actors.html], held by this class, to RayActorMethod class.

	_remote() – creates native Ray actor [https://docs.ray.io/en/master/actors.html] object
to be held by this class.

API

	
class unidist.core.backends.ray.actor.RayActor(cls, num_cpus, resources, actor_handle=None)

	The class implements the interface in Actor using Ray backend.

	Parameters:

	
	cls (object) – Class to be an actor class.

	num_cpus (int) – The number of CPUs to reserve for the lifetime of the actor.

	resources (dict) – Custom resources to reserve for the lifetime of the actor.

	actor_handle (None or ray.actor.ActorHandle) – Used for proper serialization/deserialization via __reduce__.

	
classmethod _deserialization_helper(state)

	Helper to restore the state of the object.

This is defined to make pickling work via __reduce__.

	Parameters:

	state (dict) – The serialized state of the object.

	Return type:

	RayActor

	
_remote(*args, num_cpus=None, resources=None, **kwargs)

	Create actor class, specific for Ray backend, from self._cls.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in self._cls class constructor.

	num_cpus (int, optional) – The number of CPUs to reserve for the lifetime of the actor.

	resources (dict, optional) – Custom resources to reserve for the lifetime of the actor.

	**kwargs (dict) – Keyword arguments to be passed in self._cls class constructor.

	Return type:

	RayActor

	
_serialization_helper()

	Helper to save the state of the object.

This is defined to make pickling work via __reduce__.

	Returns:

	A dictionary of the information needed to reconstruct the object.

	Return type:

	dict

RayActorMethod

The class is specific implementation of ActorMethod class using Ray.

The RayActorMethod implements internal method
_remote() that is responsible for
calls of native Ray actor [https://docs.ray.io/en/master/actors.html] class methods.

API

	
class unidist.core.backends.ray.actor.RayActorMethod(cls, method_name)

	The class implements the interface in ActorMethod using Ray backend.

	Parameters:

	
	cls (ray.actor.ActorHandle) – An actor class from which method method_name will be called.

	method_name (str) – The name of the method to be called.

	
_remote(*args, num_returns=None, **kwargs)

	Execute self._method_name in a worker process.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in the method.

	num_returns (int, optional) – Number of results to be returned. If it isn’t
provided, self._num_returns will be used.

	**kwargs (dict) – Keyword arguments to be passed in the method.

	Returns:

	Type of returns depends on num_returns value:

	if num_returns == 1, ObjectRef will be returned.

	if num_returns > 1, list of ObjectRef will be returned.

	if num_returns == 0, None will be returned.

	Return type:

	ObjectRef, list or None

RayBackend

The class is specific implementation of Backend interface using Ray.

API

	
class unidist.core.backends.ray.backend.RayBackend

	The class that implements the interface in Backend using Ray.

	
static cluster_resources()

	Get resources of Ray cluster.

	Returns:

	Dictionary with cluster nodes info in the form
{“node_ip0”: {“CPU”: x0}, “node_ip1”: {“CPU”: x1}, …}.

	Return type:

	dict

	
static get(object_refs)

	Get a remote object or a list of remote objects
from distributed memory.

	Parameters:

	object_refs (ray.ObjectRef or list of ray.ObjectRef-s) – Ray ObjectRef or a list of Ray ObjectRef objects to get data from.

	Returns:

	A Python object or a list of Python objects.

	Return type:

	object

	
static get_ip()

	Get node IP address.

	Returns:

	Node IP address.

	Return type:

	str

	
is_initialized()

	Check if Ray backend has already been initialized.

	Returns:

	True or False.

	Return type:

	bool

	
static make_actor(cls, num_cpus, resources)

	Define an actor class.

	clsobject
	Class to be an actor class.

	num_cpusint
	The number of CPUs to reserve for the lifetime of the actor.

	resourcesdict
	Custom resources to reserve for the lifetime of the actor.

	Returns:

	
	RayActor – The actor class type to create.

	list – The list of arguments for RayActor constructor.

	
static make_remote_function(function, num_cpus, num_returns, resources)

	Define a remote function.

	functioncallable
	Function to be a remote function.

	num_cpusint
	The number of CPUs to reserve for the remote function.

	num_returnsint
	The number of ObjectRef-s returned by the remote function invocation.

	resourcesdict
	Custom resources to reserve for the remote function.

	Return type:

	RayRemoteFunction

	
static num_cpus()

	Get the number of CPUs used by the execution backend.

	Return type:

	int

	
static put(data)

	Put data into distributed memory.

	Parameters:

	data (object) – Data to be put.

	Returns:

	Ray ObjectRef matching to data.

	Return type:

	ray.ObjectRef

	
static shutdown()

	Shutdown Ray execution backend.

	
static wait(object_refs, num_returns=1)

	Wait until object_refs are finished.

This method returns two lists. The first list consists of
object refs that correspond to objects that completed computations.
The second list corresponds to the rest of the object refs (which may or may not be ready).

	Parameters:

	
	object_refs (list of ray.ObjectRef-s) – List of Ray ObjectRefs to be waited.

	num_returns (int, default: 1) – The number of Ray ObjectRefs that should be returned as ready.

	Returns:

	List of object refs that are ready and list of the remaining object refs.

	Return type:

	tuple

RayRemoteFunction

The class is specific implementation of RemoteFunction class using Ray.

The RayRemoteFunction implements internal method
_remote() that transmites
execution of operations to Ray.

API

	
class unidist.core.backends.ray.remote_function.RayRemoteFunction(function, num_cpus, num_returns, resources)

	The class that implements the interface in RemoteFunction using Ray.

	Parameters:

	
	function (callable) – A function to be called remotely.

	num_cpus (int) – The number of CPUs to reserve for the remote function.

	num_returns (int) – The number of ObjectRef-s returned by the remote function invocation.

	resources (dict) – Custom resources to reserve for the remote function.

	
_remote(*args, num_cpus=None, num_returns=None, resources=None, **kwargs)

	Execute self._remote_function in a worker process.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in the self._remote_function.

	num_cpus (int, optional) – The number of CPUs to reserve for the remote function.

	num_returns (int, optional) – The number of ObjectRef-s returned by the remote function invocation.

	resources (dict, optional) – Custom resources to reserve for the remote function.

	**kwargs (dict) – Keyword arguments to be passed in the self._remote_function.

	Returns:

	Type of returns depends on num_returns value:

	if num_returns == 1, ObjectRef will be returned.

	if num_returns > 1, list of ObjectRef will be returned.

	if num_returns == 0, None will be returned.

	Return type:

	ObjectRef, list or None

ActorClass

As soon as a user wraps a class with remote() decorator,
the class will be an instance of ActorClass class.
The class is a factory creating base Actor class
that wraps the actor class specific for the backend when calling remote() method.

API

	
class unidist.core.base.actor.ActorClass(actor_cls, *actor_cls_args)

	A class that serves as a actor class decorator.

This wraps an instance of the actor class, which in turn wraps
an actor that is meant to be remote, specific for the backend.

	Parameters:

	actor_cls (Actor) – An instance of the Actor child class.

	
options(*args, num_cpus=None, resources=None, **kwargs)

	Override the actor instantiation parameters.

	Parameters:

	
	*args (iterable) – Positional arguments to be overrided.

	num_cpus (int, optional) – The number of CPUs to reserve for the lifetime of the actor.

	resources (dict, optional) – Custom resources to reserve for the lifetime of the actor.

	**kwargs (dict) – Keyword arguments to be overrided.

	Returns:

	An instance of wrapped class that a non-underscore .remote() can be called on.

	Return type:

	ActorWrapper

	
remote(*args, **kwargs)

	Instantiate an actor class.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in the class constructor
that is meant to be actor.

	**kwargs (dict) – Keyword arguments to be passed in the class constructor
that is meant to be actor.

	Return type:

	Actor

Actor

The class is a wrapper over an actor class specific for the backend. All calls of the methods are transmitted
to the actor class of the concrete backend. The Actor implements the dunder method
__getattr__() that transmits an access responsibility to the methods
of the native actor for the backend, held by the concrete actor class of the backend,
to ActorMethod class by calling remote() on it.

API

	
class unidist.core.base.actor.Actor(actor_cls)

	A class that is base for any actor class specific for the backend.

This wraps an instance of the child class, which in turn wraps
an actor that is meant to be remote, specific for the backend.

	Parameters:

	actor_cls (Actor) – An instance of the Actor child class.

ActorMethod

The class is a wrapper over an actor method class specific for the backend. All calls of the methods are transimitted
to the actor class method of the concrete backend.

API

	
class unidist.core.base.actor.ActorMethod(actor_method_cls)

	A class that is base for any actor method class specific for the backend.

This wraps an instance of the child class, which in turn wraps
an actor method that is meant to be remote, specific for the backend.

	Parameters:

	actor_method_cls (ActorMethod) – An instance of the ActorMethod child class.

	
options(*args, num_returns=None, **kwargs)

	Override the actor method invocation parameters.

	Parameters:

	
	*args (iterable) – Positional arguments to be overrided.

	num_returns (int, optional) – The number of object refs returned by the remote function invocation.

	**kwargs (dict) – Keyword arguments to be overrided.

	Returns:

	An instance of wrapped method that a non-underscore .remote() can be called on.

	Return type:

	FuncWrapper

	
remote(*args, **kwargs)

	Call an actor method in a worker process.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in the actor method.

	**kwargs (dict) – Keyword arguments to be passed in the actor method.

	Return type:

	ObjectRef, list or None

Backend

The interface defining operations that should be overridden by the concrete backend classes
and BackendProxy as well.

API

	
class unidist.core.base.backend.Backend

	An interface that represents the parent class for any backend class.

	
static cluster_resources()

	Get resources of the cluster.

	Returns:

	Dictionary with cluster nodes info in the form
{“node_ip0”: {“CPU”: x0}, “node_ip1”: {“CPU”: x1}, …}.

	Return type:

	dict

	
static get(object_refs)

	Get a remote object or a list of remote objects
from distributed memory.

	Parameters:

	object_refs (ObjectRef or list) – Object ref or a list of object refs to get data from.

	Returns:

	A Python object or a list of Python objects.

	Return type:

	object

Notes

The method of the child class for the concrete backend should pass
object_refs specific for the backend.

	
static get_ip()

	Get node IP address.

	Returns:

	Node IP address.

	Return type:

	str

	
static is_initialized()

	Check if a unidist backend has already been initialized.

	Returns:

	True or False.

	Return type:

	bool

	
static make_actor(cls, num_cpus, resources)

	Define an actor class.

	clsobject
	Class to be an actor class.

	num_cpusint
	The number of CPUs to reserve for the lifetime of the actor.

	resourcesdict
	Custom resources to reserve for the lifetime of the actor.

	Return type:

	ActorClass

Notes

The method of the child class for the concrete backend should return
actor class specific for the backend and arguments to be passed in the actor.

	
static make_remote_function(function, num_cpus, num_returns, resources)

	Define a remote function.

	functioncallable
	Function to be a remote function.

	num_cpusint
	The number of CPUs to reserve for the remote function.

	num_returnsint
	The number of ObjectRef-s returned by the remote function invocation.

	resourcesdict
	Custom resources to reserve for the remote function.

	Return type:

	RemoteFunction

Notes

The method of the child class for the concrete backend should return
remote function object specific for the backend.

	
static num_cpus()

	Get the number of CPUs used by the execution backend.

	Return type:

	int

	
static put(data)

	Put data into distributed memory.

	Parameters:

	data (object) – Data to be put.

	Returns:

	ObjectRef matching to data.

	Return type:

	ObjectRef

Notes

The method of the child class for the concrete backend should return
object ref specific for the backend.

	
static shutdown()

	Shutdown an execution backend.

	
static wait(object_refs, num_returns=1)

	Wait until object_refs are finished.

This method returns two lists. The first list consists of
object ref-s that correspond to objects that completed computations.
The second list corresponds to the rest of the object ref-s (which may or may not be ready).

	Parameters:

	
	object_refs (ObjectRef or list) – Object ref or list of object refs to be waited.

	num_returns (int, default: 1) – The number of object refs that should be returned as ready.

	Returns:

	List of object refs that are ready and list of the remaining object refs.

	Return type:

	two lists

Notes

The method of the child class for the concrete backend should pass and return
object ref-s specific for the backend.

BackendProxy

A singleton class which instance is created during unidist initialiation using
init() function. As soon as the instance is created, any operation called by a user
can be dispatched to the concrete backend correctly. After an operation is performed by the concrete backend,
the result hands over back to this class to postprocess it if necessary and return to the user.

API

	
class unidist.core.base.backend.BackendProxy(backend_cls)

	A class which instance is a proxy object to dispatch operations to the concrete backend.

	Parameters:

	backend_cls (Backend) – Instance of the concrete backend class.

	
cluster_resources()

	Get resources of the cluster.

	Returns:

	Dictionary with cluster nodes info in the form
{“node_ip0”: {“CPU”: x0}, “node_ip1”: {“CPU”: x1}, …}.

	Return type:

	dict

	
get(object_refs)

	Get a remote object or a list of remote objects
from distributed memory.

	Parameters:

	object_refs (ObjectRef or list) – ObjectRef or a list of ObjectRef-s to get data from.

	Returns:

	A Python object or a list of Python objects.

	Return type:

	object

	
classmethod get_instance(backend_cls=None)

	Get instance of this class.

	Parameters:

	backend_cls (Backend, optional) – Instance of the concrete backend class.

	
get_ip()

	Get node IP address.

	Returns:

	Node IP address.

	Return type:

	str

	
is_initialized()

	Check if a unidist backend has already been initialized.

	Returns:

	True or False.

	Return type:

	bool

	
static is_object_ref(obj)

	Whether an object is ObjectRef or not.

	Parameters:

	obj (object) – An object to be checked.

	Returns:

	True if an object is ObjectRef, False otherwise.

	Return type:

	bool

	
make_actor(cls, num_cpus, resources)

	Define an actor class.

	clsobject
	Class to be an actor class.

	num_cpusint
	The number of CPUs to reserve for the lifetime of the actor.

	resourcesdict
	Custom resources to reserve for the lifetime of the actor.

	Return type:

	ActorClass

	
make_remote_function(function, num_cpus, num_returns, resources)

	Define a remote function.

	functioncallable
	Function to be a remote function.

	num_cpusint
	The number of CPUs to reserve for the remote function.

	num_returnsint
	The number of ObjectRef-s returned by the remote function invocation.

	resourcesdict
	Custom resources to reserve for the remote function.

	Return type:

	RemoteFunction

	
num_cpus()

	Get the number of CPUs used by the execution backend.

	Return type:

	int

	
put(data)

	Put data into distributed memory.

	Parameters:

	data (object) – Data to be put.

	Returns:

	ObjectRef matching to data.

	Return type:

	ObjectRef

	
shutdown()

	Shutdown an execution backend.

	
wait(object_refs, num_returns=1)

	Wait until object_refs are finished.

This method returns two lists. The first list consists of
ObjectRef-s that correspond to objects that completed computations.
The second list corresponds to the rest of the ObjectRef-s (which may or may not be ready).

	Parameters:

	
	object_refs (ObjectRef or list) – ObjectRef or list of ObjectRef-s to be waited.

	num_returns (int, default: 1) – The number of ObjectRef-s that should be returned as ready.

	Returns:

	List of ObjectRef-s that are ready and list of the remaining ObjectRef-s.

	Return type:

	two lists

Common Utilities

This page contains common utulities used by core functionality.

API

	
unidist.core.base.common.filter_arguments(*args, **kwargs)

	Filter args and kwargs so that a backend itself is able to materialize data.

	Parameters:

	
	*args (list or tuple) – Positional arguments to be filtered.

	**kwargs (dict) – Keyword arguments to be filtered.

	Returns:

	
	list – Filtered positional arguments.

	dict – Filtered keyword arguments.

Notes

The method unwraps one level of nesting for args and kwargs so that
an underlying backend is able to materialize data.
Data materialization of the next levels of nesting is a user’s burden.

ObjectRef

The class is user-facing object reference that is returned from
RemoteFunction or ActorMethod.
The class is a wrapper over an original future object of the concrete backend (ray.ObjectRef, dask.distributed.Future, etc.).

API

	
class unidist.core.base.object_ref.ObjectRef(ref)

	A class that wraps an object ref specific for the backend.

	Parameters:

	ref (object ref) – An object ref specific for the backend.

RemoteFunction

The class is a wrapper over a remote function specific for the backend. As soos as a user wraps a function
with remote() decorator, the function will be an instance of
RemoteFunction class. Then, the user can call the remote function using
remote() method of the class.

API

	
class unidist.core.base.remote_function.RemoteFunction(remote_function_cls, function)

	A class that is base for any remote function class specific for the backend.

This wraps an instance of the child class, which in turn wraps
a remote function that is meant to be remote, specific for the backend.

	Parameters:

	
	remote_function_cls (RemoteFunction) – An instance of the child class.

	function (callable) – A function that is meant to be remote.

	
options(*args, num_cpus=None, num_returns=None, resources=None, **kwargs)

	Override the remote function invocation parameters.

	Parameters:

	
	*args (iterable) – Positional arguments to be overrided.

	num_cpus (int, optional) – Positional arguments to be overrided.

	num_returns (int, optional) – Positional arguments to be overrided.

	resources (int, optional) – Positional arguments to be overrided.

	**kwargs (dict) – Keyword arguments to be overrided.

	Returns:

	An instance of wrapped function that a non-underscore .remote() can be called on.

	Return type:

	FuncWrapper

	
remote(*args, **kwargs)

	Call a remote function in a worker process.

	Parameters:

	
	*args (iterable) – Positional arguments to be passed in the remote function.

	**kwargs (dict) – Keyword arguments to be passed in the remote function.

	Return type:

	ObjectRef, list or None

Unidist on Dask

This section describes the use of unidist with the Dask execution backend.

There are two ways to choose the execution backend to run on.
First, by setting the UNIDIST_BACKEND environment variable:

unidist will use Dask
$ export UNIDIST_BACKEND=dask

import os

unidist will use Dask
os.environ["UNIDIST_BACKEND"] = "dask"

Second, by setting the configuration value associated with the environment variable:

from unidist.config import Backend

Backend.put("dask") # unidist will use Dask

For more information on the environment variables and associated configs specific to the Dask backend
see config API section.

Unidist on Dask cluster

Currently, in order to use unidist with Dask on a cluster, Dask cluster needs to be pre-initialized.
Please refer to its own documentation Dask Guide [https://distributed.dask.org/en/latest/]
on how to set up a cluster.

Unidist on MPI

This section describes the use of unidist with the MPI execution backend.
Since there are different MPI implementations, each of which can be used as a backend in unidist,
refer to Installation page on how to install a specific MPI implementation.

There are two ways to choose the execution backend to run on.
First, by setting the UNIDIST_BACKEND environment variable:

unidist will use MPI
$ export UNIDIST_BACKEND=mpi

import os

unidist will use MPI
os.environ["UNIDIST_BACKEND"] = "mpi"

Second, by setting the configuration value associated with the environment variable:

from unidist.config import Backend

Backend.put("mpi") # unidist will use MPI

For more information on the environment variables and associated configs specific to the MPI backend
see config API section.

Run unidist on MPI

Unidist on MPI in a single node

In order to run unidist on MPI in a single node, there are two options.

Controller/Worker model

This execution model is similar to ones other execution backends use.
To run unidist on MPI in a single node using Controller/Worker model you should use mpiexec command.

$ mpiexec -n 1 python script.py

MPI worker processes will be spawned dynamically by unidist.

It is worth noting that some MPI implementations, e.g., Intel MPI implementation [https://anaconda.org/intel/mpi4py], support the ability of spawning MPI processes
without using mpiexec command so you can run unidist on Intel MPI just with:

$ python script.py

Refer to Using intel channel section of Installation page on
how to install Intel MPI implementation to use it with unidist.

SPMD model

First of all, to run unidist on MPI in a single node using SPMD model [https://en.wikipedia.org/wiki/Single_program,_multiple_data],
you should set the UNIDIST_MPI_SPAWN environment variable to False:

$ export UNIDIST_MPI_SPAWN=False

import os

os.environ["UNIDIST_MPI_SPAWN"] = "False"

or set the associated configuration value:

from unidist.config import MpiSpawn

MpiSpawn.put(False)

This will enable unidist not to spawn MPI processes dynamically because the user himself spawns the processes.

Then, you should also use mpiexec command and specify a number of workers to spawn.

$ mpiexec -n N python script.py

When initializing unidist this execution model gets transformed to Controller/Worker model.

Note

Note that the process with rank 0 devotes for the controller (root) process you interact with,
the process with rank 1 devotes for the monitor process unidist on MPI uses for tracking executed tasks.
So the processes with ranks 2 to N devote for worker processes where computation will be executed.
If you right away use Controller/Worker model to run unidist on MPI, this happens transparently.

Unidist on MPI cluster

In order to run unidist on MPI in a cluster, there are two options.

Controller/Worker model

This execution model is similar to ones other execution backends use.
To run unidist on MPI in a cluster using Controller/Worker model you should specify hosts to run on.
There are two ways to specify MPI hosts to run on.

First, by setting the UNIDIST_MPI_HOSTS environment variable:

unidist will use the hosts to run on
$ export UNIDIST_MPI_HOSTS=<host1>,...,<hostN>

import os

unidist will use the hosts to run on
os.environ["UNIDIST_MPI_HOSTS"] = "<host1>,...,<hostN>"

Second, by setting the configuration value associated with the environment variable:

from unidist.config import MpiHosts

MpiHosts.put("host1,...,hostN") # unidist will use the hosts to run on

If you’re running a program without mpiexec command, no further action required to run on the specified MPI hosts.

Note

Root proccess will always be executed locally and other proccesses will be spawned in order on the specified hosts.
If you want to run root process on a remote host, you should use ssh host before the command and
carefully check that the environment is correct. You can set some variables in ssh command or
activate the conda envirenment right before running the Python script:

ssh host ENV_VARIABLE=value "source $CONDA_PATH/bin/activate $CONDA_ENV; cd $PWD; python script.py"

If you’re running a program with mpiexec command, running is almost the same as in a single node,
but, in addition, you should use the appropriate parameter for mpiexec.
This parameter differs depending on the MPI implementation used.

	For Intel MPI or MPICH: -hosts host1,...,hostN.
You can also see Controlling Process Placement with the Intel® MPI Library [https://www.intel.com/content/www/us/en/developer/articles/technical/controlling-process-placement-with-the-intel-mpi-library.html] or
MPICH wiki [https://github.com/pmodels/mpich/blob/main/doc/wiki/how_to/Using_the_Hydra_Process_Manager.md] for deeper customization.

	For OpenMPI: -host host1:m1,...,hostN:mN, where m1, ..., mN is the number of processes on each node,
including unidist service processes (root and monitor(s)).
You can also see Scheduling processes across hosts with OpenMPI Library [https://docs.open-mpi.org/en/v5.0.x/launching-apps/scheduling.html] for deeper customization.

SPMD model

First of all, to run unidist on MPI in a cluster using SPMD model [https://en.wikipedia.org/wiki/Single_program,_multiple_data],
you should set the UNIDIST_MPI_SPAWN environment variable to False:

$ export UNIDIST_MPI_SPAWN=False

import os

os.environ["UNIDIST_MPI_SPAWN"] = "False"

or set the associated configuration value:

from unidist.config import MpiSpawn

MpiSpawn.put(False)

This will enable unidist not to spawn MPI processes dynamically because the user himself spawns the processes.

Then, you should use the appropriate parameter for mpiexec.
This parameter differs depending on the MPI implementation used.

	For Intel MPI or MPICH: -hosts host1,...,hostN.
You can also see Controlling Process Placement with the Intel® MPI Library [https://www.intel.com/content/www/us/en/developer/articles/technical/controlling-process-placement-with-the-intel-mpi-library.html] or
MPICH wiki [https://github.com/pmodels/mpich/blob/main/doc/wiki/how_to/Using_the_Hydra_Process_Manager.md] for deeper customization.

	For OpenMPI: -host host1:m1,...,hostN:mN, where m1, ..., mN is the number of processes on each node,
including unidist service processes (root and monitor(s)).
You can also see Scheduling processes across hosts with OpenMPI Library [https://docs.open-mpi.org/en/v5.0.x/launching-apps/scheduling.html] for deeper customization.

Note

Note that the process with rank 0 devotes for the controller (root) process you interact with,
the process with rank 1 devotes for the monitor process unidist on MPI uses for tracking executed tasks.
So the processes with ranks 2 to N devote for worker processes where computation will be executed.
If you right away use Controller/Worker model to run unidist on MPI, this happens transparently.

Unidist on PyMp

This section describes the use of unidist with the Python Multiprocessing execution backend.

There are two ways to choose the execution backend to run on.
First, by setting the UNIDIST_BACKEND environment variable:

unidist will use Python Multiprocessing backend
$ export UNIDIST_BACKEND=pymp

import os

unidist will use Python Multiprocessing backend
os.environ["UNIDIST_BACKEND"] = "pymp"

Second, by setting the configuration value associated with the environment variable:

from unidist.config import Backend

Backend.put("pymp") # unidist will use Python Multiprocessing backend

For more information on the environment variables and associated configs specific to the Python Multiprocessing backend
see config API section.

Unidist on PySeq

This section describes the use of unidist with the Python Sequential execution backend,
which is for debugging.

There are two ways to choose the execution backend to run on.
First, by setting the UNIDIST_BACKEND environment variable:

unidist will use Python Sequential backend
$ export UNIDIST_BACKEND=pyseq

import os

unidist will use Python Sequential backend
os.environ["UNIDIST_BACKEND"] = "pyseq"

Second, by setting the configuration value associated with the environment variable:

from unidist.config import Backend

Backend.put("pyseq") # unidist will use Python Sequential backend

For more information on the environment variables and associated configs specific to the Python Sequential backend
see config API section.

Unidist on Ray

This section describes the use of unidist with the Ray execution backend.

There are two ways to choose the execution backend to run on.
First, by setting the UNIDIST_BACKEND environment variable:

unidist will use Ray
$ export UNIDIST_BACKEND=ray

import os

unidist will use Ray
os.environ["UNIDIST_BACKEND"] = "ray"

Second, by setting the configuration value associated with the environment variable:

from unidist.config import Backend

Backend.put("ray") # unidist will use Ray

For more information on the environment variables and associated configs specific to the Ray backend
see config API section.

Unidist on Ray cluster

Currently, in order to use unidist with Ray on a cluster, Ray cluster needs to be pre-initialized.
Please refer to its own documentation Ray Guide [https://docs.ray.io/en/latest/index.html]
on how to set up a cluster.

 _static/plus.png

_static/file.png

_static/minus.png

_static/unidist-logo-simple-628x128.png
UNIDIST

_images/unidist-logo-simple-628x128.png
UNIDIST

nav.xhtml

 Table of Contents

 		
 What is unidist?

